Spelling suggestions: "subject:"arthroscopic surgery"" "subject:"artrhroscopic surgery""
1 |
VIRTUAL FLUOROSCOPY SYSTEM FOR ARTHROSCOPIC SURGICAL TRAININGHosseini, Zahra 10 1900 (has links)
<p>Minimally invasive operations have gained popularity over open surgical procedures in the recent years. These procedures, require the surgeon to perform highly specialized tasks including manipulation of tools through small incisions on the surface of the skin while looking at the images that are displayed on a screen. Therefore, effective training is required for the surgeons prior to performing such procedures on patients.</p> <p>In this thesis I explored a novel idea for creating a training system for arthroscopic surgery. Previously obtained CT images of a patient model and the surgical tools are manipulated to create a library of fluoroscopy images. The surgical tools are tracked (a mechanical tracker and an electromagnetic tracker used in each iterations) in order to generate a spacial relationship between the patient model and the surgical tools. The position and orientation information from the tracking system is translated into the image coordinate frame. These homologous points in the two images (of surgical tools and the patient model), are used to co-register and overlay the two images and create a virtual fluoroscopy image.</p> <p>The output image and the system performance was found to be very good and quite similar to that of a fluoroscopy system. The registration accuracy was evaluated using Root Mean Square Target Registration Error (RMS TRE). The RMS TRE for the system setup with the mechanical tracker was evaluated at 2:0 mm, 2:1 mm, and 2:5 mm, for 4, 5, and 6 control points, respectively. In the system setup with the electromagnetic tracking system the RMS TRE was evaluated at 7:6 mm, 12:4 mm, and 11:3 mm, for 5, 7, and 9 control points, respectively. The acceptable range of error for arthroscopy procedures has been proposed to be 1-2 mm.</p> <p>It was concluded that by using a tracking system, which is not prone to interference and allows for a wide range of motion this system can be completed to the point of manufacturing and use in training new surgeons.</p> / Master of Applied Science (MASc)
|
2 |
Patient-reported outcome after arthroscopic surgery of the knee in middle-age patients. : – a retrospective studyBråkenhielm, Gustaf January 2019 (has links)
Introduction: Arthroscopic partial resection of degenerative meniscal injuries has previously been frequently performed but has been questioned in recent years. However, contradictory data exist. Aim: We aimed to asses patient- reported outcome in patients over 40 years of age after arthroscopic surgery due to degenerative meniscal injury. We further aimed to compare women and men due to diagnosis and to examine the number of patients that have needed knee arthroplasty during the follow-up period. Methods: Patients > 40 years of age who underwent arthroscopic surgery of the knee in the years of 2011-2013 were studied using validated questionnaire KOOS (Knee Injury and Osteoarthritis Outcome Score) along with a self-constructed questionnaire. Results: In all subjects, the highest median score was seen in all daily living (Women:93, Men: 96) and knee pain (Women: 86, Men: 92). The lowest score was seen in sports and recreation (Women: 55, Men: 65). Men had an overall higher KOOS-score in every subscale compared to women (p>0.05). No significant difference was seen between women and men divided by diagnosis (p>0.05). 72% women and 80% men experienced improved knee function today compared to before surgery. 22% women and 14% men experienced deterioration in knee function. 6% women and men experienced unaltered knee function. 24 patients (9.5%) had got a knee arthroplasty. Conclusions: This study showed that most middle-age patients experienced increased knee function and high satisfaction rate after partial meniscectomy when suffering from degenerative meniscal injury.
|
3 |
Development of virtual reality tools for arthroscopic surgery trainingYaacoub, Fadi 12 November 2008 (has links) (PDF)
La chirurgie arthroscopique présente actuellement un essor très important pour le bénéfice du plus grand nombre des patients. Cependant, cette technique possède un certain nombre d'inconvénients et il est donc nécessaire pour le médecin de s'entrainer et répéter ses gestes afin de pouvoir exécuter ce type d'opération d'une façon efficace et certaine. En effet, les méthodes traditionnelles d'enseignement de la chirurgie sont basées sur l'autopsie des cadavres et l'entrainement sur des animaux. Avec l'évolution de notre société, ces deux pratiques deviennent de plus en plus critiquées et font l'objet de réglementations très restrictives. Afin d'atteindre un niveau plus élevé, de nouveaux moyens d'apprentissage sont nécessaires pour les chirurgiens. Récemment, la réalité virtuelle commence d'être de plus en plus utilisée dans la médecine et surtout la chirurgie. Les simulateurs chirurgicaux sont devenus une des matières les plus récentes dans la recherche de la réalité virtuelle. Ils sont également devenus une méthode de formation et un outil d'entrainement valable pour les chirurgiens aussi bien que les étudiants en médecine. Dans ce travail, un simulateur de réalité virtuelle pour l'enseignement de la chirurgie arthroscopique, surtout la chirurgie du poignet, a été préesenté. Deux questions principales sont abordées : la reconstruction et l'interaction 3-D. Une séquence d'images CT a été traitée afin de générer un modèle 3-D du poignet. Les deux principales composantes de l'interface du système sont illustrées : l'interaction 3-D pour guider les instruments chirurgicaux et l'interface de l'utilisateur pour le retour d'effort. Dans ce contexte, les algorithmes qui modélisent les objets en utilisant les approches de "Convex Hull" et qui simulent la détection de collision entre les objets virtuels en temps réel, sont présentés. En outre, un dispositif de retour d'effort est utilisé comme une interface haptique avec le système. Cela conduit au développement d'un système à faible coût, avec les mêmes avantages que les appareils professionnels. A cet égard, l'arthroscopie du poignet peut être simulée et les étudiants en médecine peuvent facilement utiliser le système et peuvent apprendre les compétences de base requises en sécurité, flexibilité et moindre coût
|
4 |
Development of virtual reality tools for arthroscopic surgery training / Développement d'outils de réalité virtuelle pour l'enseignement de la chirurgie arthroscopiqueYaacoub, Fadi 12 November 2008 (has links)
The minimally invasive approach of arthroscopy means less pain and faster recovery time for patients compared to open surgery. However, it implies a high difficulty of performance. Therefore, surgeon should remain at a high level of technical and professional expertise to perform such operations. Surgeon’s skills are being developed over years of surgical training on animals, cadavers and patients. Nowadays, cadavers and animal specimens present an ethical problem also the practice on real humans is usually risky. For surgeons to reach a high level, new and alternative ways of performing surgical training are required. Virtual reality technology has opened new realms in the practice of medicine. Today, virtual reality simulators have become one of the most important training methods in the medical field. These simulators allow medical students to examine and study organs or any structure of the human body in ways that were not possible few years earlier. Similarly, the surgeon as well as the medical student can gain a valuable experience by performing a particular surgery with an anatomical accuracy and realism as it is actually performed in the real world. Thus, they can practice on virtual operation before they proceed and operate on real patients. In this thesis, a virtual reality training simulator for wrist arthroscopy is introduced. Two main issues are addressed: the 3-D reconstruction process and the 3-D interaction. Based on a sequence of CT images a realistic representation of the wrist joint is obtained suitable for the computer simulation. Two main components of the computer-based system interface are illustrated: the 3-D interaction to guide the surgical instruments and the user interface for haptic feedback. In this context, algorithms that model objects using the convex hull approaches and simulate real time exact collision detection between virtual objects are presented. A force feedback device, coupled with a haptic algorithm, is used as a haptic interface with the computer simulation system. This leads in the development of a low cost system with the same benefits as professional devices. In this regard, the wrist arthroscopy can be simulated and medical students can learn the basic skills required with safety, flexibility and less cost / La chirurgie arthroscopique présente actuellement un essor très important pour le bénéfice du plus grand nombre des patients. Cependant, cette technique possède un certain nombre d’inconvénients et il est donc nécessaire pour le médecin de s’entrainer et répéter ses gestes afin de pouvoir exécuter ce type d’opération d’une façon efficace et certaine. En effet, les méthodes traditionnelles d’enseignement de la chirurgie sont basées sur l’autopsie des cadavres et l’entrainement sur des animaux. Avec l’évolution de notre société, ces deux pratiques deviennent de plus en plus critiquées et font l’objet de réglementations très restrictives. Afin d’atteindre un niveau plus élevé, de nouveaux moyens d’apprentissage sont nécessaires pour les chirurgiens. Récemment, la réalité virtuelle commence d’être de plus en plus utilisée dans la médecine et surtout la chirurgie. Les simulateurs chirurgicaux sont devenus une des matières les plus récentes dans la recherche de la réalité virtuelle. Ils sont également devenus une méthode de formation et un outil d’entrainement valable pour les chirurgiens aussi bien que les étudiants en médecine. Dans ce travail, un simulateur de réalité virtuelle pour l’enseignement de la chirurgie arthroscopique, surtout la chirurgie du poignet, a été préesenté. Deux questions principales sont abordées : la reconstruction et l’interaction 3-D. Une séquence d’images CT a été traitée afin de générer un modèle 3-D du poignet. Les deux principales composantes de l’interface du système sont illustrées : l’interaction 3-D pour guider les instruments chirurgicaux et l’interface de l’utilisateur pour le retour d’effort. Dans ce contexte, les algorithmes qui modélisent les objets en utilisant les approches de “Convex Hull” et qui simulent la détection de collision entre les objets virtuels en temps réel, sont présentés. En outre, un dispositif de retour d’effort est utilisé comme une interface haptique avec le système. Cela conduit au développement d’un système à faible coût, avec les mêmes avantages que les appareils professionnels. A cet égard, l’arthroscopie du poignet peut être simulée et les étudiants en médecine peuvent facilement utiliser le système et peuvent apprendre les compétences de base requises en sécurité, flexibilité et moindre coût
|
Page generated in 0.0616 seconds