• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Degeneration of articular cartilage and cartilage healing in rabbit models.

January 1993 (has links)
by Linda, Fu Lap Kun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 115-128). / ACKNOWLEDGMENT --- p.i / TABLE OF CONTENTS --- p.ii / ABSTRACT --- p.xii / Chapter CHAPTER ONE: --- INTRODUCTION --- p.1 / Chapter CHAPTER TWO : --- LITERATURE REVIEW --- p.6 / Chapter 2.1 --- BIOLOGY OF ARTICULAR CARTILAGE --- p.7 / Chapter 2.1.1 --- Normal cartilage --- p.7 / Chapter 2.1.1.1 --- Composition and properties --- p.7 / Chapter 2.1.1.2 --- Morphology of normal cartilage --- p.12 / Chapter 2.1.2 --- Degeneration of cartilage --- p.12 / Chapter 2.1.2.1 --- Morphology of degenerative cartilage --- p.12 / Chapter 2.1.2.2 --- Biochemical characteristics of degenerative cartilage --- p.13 / Chapter 2.1.3 --- Healing of degenerated articular cartilage --- p.14 / Chapter 2.2 --- METHODS TO CREATE OSTEOARTHRITIS MODEL --- p.15 / Chapter 2.2.1 --- Immobilization --- p.16 / Chapter 2.2.2 --- Instability method --- p.16 / Chapter 2.3 --- SCORING OF OSTEOARTHRITIS --- p.17 / Chapter 2.3.1 --- Gross morphology --- p.17 / Chapter 2.3.1.1 --- Mapping of OA area --- p.17 / Chapter 2.3.1.2 --- Amount of synovial fluid --- p.18 / Chapter 2.3.1.3 --- Mobility --- p.18 / Chapter 2.3.2 --- Histological scoring --- p.18 / Chapter 2.3.3 --- Biochemical comparison --- p.21 / Chapter 2.3.3.1 --- Water content --- p.21 / Chapter 2.3.3.2 --- Proteoglycan --- p.21 / Chapter 2.4 --- THE TREATMENT OF OSTEOARTHRITIS --- p.23 / Chapter 2.4.1 --- Biology of Hyaluronic acid --- p.24 / Chapter 2.4.2 --- Repairing properties of Hyaluronic acid in OA --- p.24 / Chapter 2.4.3 --- The pharmacology of Hyalgan --- p.26 / Chapter 2.4.4 --- Intraarticular injection of Hyaluronic acid in animals --- p.26 / Chapter CHAPTER THREE: --- CREATING OSTEOARTHRITIC MODEL --- p.28 / Chapter 3.1 --- INTRODUCTION --- p.29 / Chapter 3.2 --- MATERIAL AND METHODOLOGY --- p.30 / Chapter 3.2.1 --- Animals --- p.30 / Chapter 3.2.2 --- Instabilization --- p.32 / Chapter 3.2.2.1 --- Reagent and Apparatus --- p.32 / Chapter 3.2.2.2 --- Procedure --- p.32 / Chapter 3.2.3 --- Immobilization --- p.36 / Chapter 3.2.3.1 --- Reagent and Apparatus --- p.36 / Chapter 3.2.3.2 --- Procedure --- p.37 / Chapter 3.3 --- METHODS OF ASSESSMENT --- p.39 / Chapter 3.3.1 --- Gross structure comparison --- p.40 / Chapter 3.3.1.1 --- Gross mapping of the OA areas --- p.40 / Chapter 3.3.2 --- Histochemical scoring --- p.40 / Chapter 3.3.2.1 --- Procedure --- p.40 / Chapter 3.3.2.1.1 --- Hematoxylin & eosin stain --- p.45 / Chapter 3.3.2.1.2 --- Safranin O stain --- p.45 / Chapter 3.3.3 --- Biochemical assessment --- p.47 / Chapter 3.3.3.1 --- Water content --- p.47 / Chapter 3.3.3.2 --- Proteoglycan content --- p.49 / Chapter 3.3.3.2.1 --- Reagent --- p.49 / Chapter 3.3.3.2.2 --- Procedure --- p.49 / Chapter 3.3.3.2.3 --- Standard curve --- p.52 / Chapter 3.4 --- METHODS OF STATISTICAL ANALYSIS --- p.53 / Chapter 3.5 --- RESULTS --- p.54 / Chapter 3.5.1 --- Gross morphology --- p.54 / Chapter 3.5.1.1 --- General appearance --- p.54 / Chapter 3.5.1.2 --- Gross osteoarthritic area --- p.56 / Chapter 3.5.2 --- Histological results --- p.59 / Chapter 3.5.2.1 --- Histological appearance --- p.59 / Chapter 3.5.3 --- Results of biochemical assay --- p.66 / Chapter 3.3.3.1 --- Water content --- p.66 / Chapter 3.5.3.2 --- Proteoglycan --- p.69 / Chapter 3.6 --- DISCUSSION --- p.72 / Chapter 3.6.1 --- Relation between gross OA area & Mankin's score --- p.72 / Chapter 3.6.2 --- Relation between gross OA area & GAG content --- p.74 / Chapter 3.6.3 --- Relation between Mankin's score & water content --- p.76 / Chapter 3.6.4 --- Relation between Mankin's score & GAG content --- p.78 / Chapter 3.6.5 --- Comparison of the four different parameters --- p.79 / Chapter 3.6.6 --- Merit on the four parameters --- p.84 / Chapter 3.6.6 --- Consistency & reproducible of the OA model --- p.85 / Chapter 3.6.7 --- Moderately severe OA model was needed in Part II --- p.86 / Chapter 3.7 --- CONCLUSION --- p.86 / Chapter CHAPTER FOUR: --- HEALING OF CARTILAGE --- p.87 / Chapter 4.1 --- INTRODUCTION --- p.88 / Chapter 4.2 --- MATERIALS AND METHODS --- p.89 / Chapter 4.2.1 --- Establishing the osteoarthritis --- p.89 / Chapter 4.2.2 --- Treatment of the rabbits --- p.90 / Chapter 4.2.2.1 --- Reagent and Apparatus --- p.90 / Chapter 4.2.2.2 --- Procedure --- p.91 / Chapter 4.2.3 --- Methods of assessment --- p.92 / Chapter 4.2.4 --- Methods of statistical analysis --- p.92 / Chapter 4.3 --- RESULTS --- p.93 / Chapter 4.3.1 --- Gross OA area --- p.94 / Chapter 4.3.2 --- Mankin's score --- p.97 / Chapter 4.3.3 --- Water content --- p.99 / Chapter 4.3.4 --- Proteoglycan . . --- p.101 / Chapter 4.3.5 --- Results of Part I and Part II --- p.103 / Chapter 4.4 --- DISCUSSION --- p.107 / Chapter 4.4.1 --- Morphological comparison --- p.107 / Chapter 4.4.2 --- Biochemical comparison --- p.110 / Chapter 4.4.3 --- Comparison of the results in two parts of experiment --- p.111 / Chapter 4.5 --- CONCLUSION --- p.113 / BIBLIOGRAPHY --- p.114 / APPENDIX --- p.129
2

Recherche de liens entre expression d'ARN non codants et physiopathologies articulaires, utilisation des microARN comme biomarqueurs du phénotype chondrocytaire / Search for links between non-coding RNAs and joint pathophysiology : the use of microRNAs as chondrocyte phenotype biomarkers

Clément, Thomas 10 September 2014 (has links)
L’arthrose est la pathologie articulaire la plus répandue et, avec l’allongement de l’espérance de vie, sa prévalence ne cesse d’augmenter. Elle se caractérise par une dégénérescence du cartilage articulaire associée à une inflammation synoviale et un remodelage anormal de l’os sous-chondral, qui résultent en une perte progressive de mobilité et des douleurs très handicapantes. Dans le cartilage, le chondrocyte est le seul type cellulaire et il est responsable de la synthèse des composants de la matrice extracellulaire (collagènes, protéoglycanes). Au cours de l’arthrose, le phénotype du chondrocyte est altéré et la balance synthèse/dégradation des composants matriciels est déséquilibrée en faveur de la dégradation du cartilage. Il n’existe actuellement aucun traitement permettant de ralentir efficacement l’évolution du processus arthrosique, de sorte que la recherche de biomarqueurs pertinents et de cibles thérapeutiques potentielles est en pleine effervescence depuis l’explosion de l’étude des microARNs. Les microARNs sont des petits ARNs non codants régulant négativement l’expression des gènes. On estime que 50% des gènes sont potentiellement régulés par les miARNs. Les miARNs semblent impliqués dans tous les processus biologiques majeurs tels que la différenciation cellulaire, l’apoptose ou encore la cancérisation. Ces petits ARN non codants sont donc des biomarqueurs potentiels très intéressants. Au cours de ces travaux de thèse l’implication des miARN dans la régulation du phénotype chondrocytaire a été étudiée. A partir d’un modèle de perte du phénotype chondrocytaire différencié, provoquée par des repiquages successifs ou une stimulation par l’IL-1β les variations du profil d’expression des miARNs ont été analysées par l’utilisation de puces dédiées. Ces données ont permis de mettre en évidence 43 miARNs candidats dont le cluster miR-23~27b~24-1 et miR-29b. L’étude de la régulation de la production différentielle des miARNs de ce cluster a été entreprise, sans que nous parvenions toutefois à apporter une réponse formelle sur les mécanismes impliqués. Néanmoins, nous avons identifié miR-29b comme un régulateur négatif de l’expression du gène codant Col-IIa1 au cours de la perte du phénotype différencié, ainsi que chez les chondrocytes « arthrosiques ». Enfin, comme il a été montré au laboratoire que l’équilibre entre les concentrations extracellulaires de pyrophosphate/phosphate inorganique (ePi/ePPi) était essentiel au maintien du phénotype chondrocytaire différencié, nous nous sommes intéressés à la régulation des gènes codant les acteurs protéiques impliqués dans cette balance (ANK, PC1, Pit-1 et TNAP). A partir de prédictions de cibles par analyse in silico, un panel de 4 miARNs candidats a été établi : let7e, miR-9, miR-188 et miR-219. Nos travaux avec des systèmes rapporteurs ont démontré l’implication de miR-9 en tant que régulateur négatif de l’expression des gènes PC-1, Pit-1 et TNAP, de façon cohérente ou non avec les prédictions bio-informatiques. / Osteoarthritis (OA) is the most frequent joint disease and its prevalence still grows with the increase in lifespan. OA is characterized by articular cartilage degeneration, together with synovitis and abnormal subchondral bone remodeling, leading to progressive loss of mobility and pain. Chondrocyte is the unique cell type in cartilage which accounts for the synthesis of extracellular matrix (ECM) components (collagens, proteoglycans). During OA, chondrocyte phenotype is altered and the balance between ECM synthesis and degradation is impaired towards cartilage degradation. To date no treatment can efficiently reduce OA progression so that the search for reliable biomarkers and potential therapeutic targets is very active, particularly since the discovery of microRNAs. miRNAs are estimated to regulate 50% of cellular genes. They contribute to major cellular processes such as cell differentiation, apoptosis or tumorigenesis. Therefore, miRNAs are interesting putative biomarkers. During this PhD thesis, we studied the contribution of miARNs to the control of chondrocyte phenotype. Using a model of chondrocyte differentiated phenotype loss induced by extensive subculturing or IL-1β challenge we studied changes in miRNAs profile with microarrays. We determined a panel of 43 varying miRNA including the miR-23~27b~24-1 cluster and miR-29b. The differential production of miRNAs from this cluster has been investigated, but we didn’t succeed in identifying the underlying mechanisms. However, we identified miR-29b as a negative post-transcriptional regulator of Col-IIa1 during differentiated phenotype loss and OA. Finally, as equilibrium between extracellular levels of inorganic phosphate and pyrophosphate (ePi/ePPi) was previously shown in the laboratory to be crucial for the maintenance of a differentiated chondrocyte phenotype, we studied the regulation of the genes encoding the 4 proteins regulating this balance (ANK, PC1, Pit-1 and TNAP). From in silico analysis, we selected a panel of 4 miRNAs: let7e, miR-9, miR-188 and miR-219. Using reporter assays, we showed that miR-9 was a negative regulator of PC-1, Pit-1 and TNAP, according or not to bioinformatics prediction

Page generated in 0.0503 seconds