Spelling suggestions: "subject:"artificial air well"" "subject:"artificial air cell""
1 |
Design and Characterization of Biomimetic Artificial Hair Cells in an Artificial Cochlear EnvironmentTravis, Jeffrey Philip 11 March 2014 (has links)
This research details the creation and characterization of a new biomimetic artificial inner hair cell sensor in an artificial cochlear environment. Designed to mimic the fluid flows around the inner hair cells of the human cochlea, the artificial cochlear environment produces controlled, linear sinusoidal fluid flows with frequencies between 25 and 400 Hz. The lipid bilayer-based artificial inner hair cell generates current through changes in the bilayer's capacitance. This capacitance change occurs as the sensor's artificial stereocilium transfers the force in the fluid flow to the bilayer.
Frequency tuning tests are performed to characterize the artificial inner hair cell's response to a linear chirp signal from 1 to 400 Hz. The artificial inner hair cell's response peaks at a resonant frequency of approximately 83 Hz throughout most of the tests. Modelling the artificial stereocilium as a pinned free beam with a rotational spring at the pinned end yields a rotational spring stiffness of 177*10^-6 Nm/rad. Results with 0 mV potential applied across the bilayer indicate that current generation at 0 mV likely comes from other sources besides the bilayer. Increasing the voltage potential increases the broadband power output of the system, with an approximately linear relationship. A final test keeps the fluid flow frequency constant and varies the fluid velocity and applied voltage potential. Manipulation of the applied voltage potential results in a fluid velocity to RMS current relationship reminiscent of the variable sensitivity of the human cochlea. / Master of Science
|
2 |
Development of Active Artificial Hair Cell SensorsJoyce, Bryan Steven 04 June 2015 (has links)
The cochlea is known to exhibit a nonlinear, mechanical amplification which allows the ear to detect faint sounds, improves frequency discrimination, and broadens the range of sound pressure levels that can be detected. In this work, active artificial hair cells (AHC) are proposed and developed which mimic the nonlinear cochlear amplifier. Active AHCs can be used to transduce sound pressures, fluid flow, accelerations, or another form of dynamic input. These nonlinear sensors consist of piezoelectric cantilever beams which utilize various feedback control laws inspired by the living cochlea. A phenomenological control law is first examined which exhibits similar behavior as the living cochlea. Two sets of physiological models are also examined: one set based on outer hair cell somatic motility and the other set inspired by active hair bundle motility. Compared to passive AHCs, simulation and experimental results for active AHCs show an amplified response due to small stimuli, a sharpened resonance peak, and a compressive nonlinearity between response amplitude and input level. These bio-inspired devices could lead to new sensors with lower thresholds of sound or vibration detection, improved frequency sensitivities, and the ability to detect a wider range of input levels. These bio-inspired, active sensors lay the foundation for a new generation of sensors for acoustic, fluid flow, or vibration sensing. / Ph. D.
|
3 |
An Open Loop Feed-Forward Control Scheme for Bioinspired Artificial Hair Cell SensorsCrowley, Kevin Michael 11 March 2015 (has links)
This research documents the creation and use of an open-loop feed forward control scheme designed to manipulate the DC potential across lipid bilayer membranes in artificial hair cell sensors. Inspired by the human cochlea's non-linear gain phenomenon, whereby the cochlea can increase or decrease the effective gain of the auditory system, this controller is the first step in developing more sophisticated signal processing schemes for use with future bio-inspired artificial hair cell development. This open-loop controller allows for three preset gain mappings to tailor the DC offset in response to an external stimulus. Linear, nonlinear and sigmoidal mappings were created to observe the differences in system response during constant frequency and variable frequency excitation. In constant frequency testing, artificial hair cell sensors were excited at 100 Hz across a range of input intensities to observer current output response during increasing or decreasing excitation levels. Results showed average coherence values above 0.98 for the relationship between current output and fluid velocity, indicating a strong correlation between excitation and measured output. In the bilayer with stereocilia test case, RMS power increased with higher excitation levels but the various control laws did not appear to have any discernible impact on output power. In variable frequency testing, sensors were excited from 0-300 Hz to observe the real time effects of our control law on amplification or attenuation of output current with varying input intensity. Results of the variable frequency excitation could not definitively prove that the varied DC potential had an effect on current output due to excessive capacitive noise, but the controller did provide some encouraging results from its behavior during testing. We observed three distinct DC potential response curves for each mapping, indicating, that with some refinement, we should be able to manipulate output current with user defined gain tunings. / Master of Science
|
4 |
Airflow sensing with arrays of hydrogel supported artificial hair cellsSarlo, Rodrigo 04 March 2015 (has links)
Arrays of fully hydrogel-supported, artificial hair cell (AHC) sensors based on bilayer membrane mechanotransduction are designed and characterized to determine sensitivity to multiple stimuli. The work draws upon key engineering design principles inspired by the characteristics of biological hair cells, primarily the use of slender hair-like structures as flow measurement elements. Many hair cell microelectromechanical (MEMS) devices to sense fluid flow have already been built based on this principle. However, recent developments in lipid bilayer applications, namely physically encapsulated bilayers and hydrogel interface bilayers, have facilitated the development of AHCs made primarily from biomolecular materials. The most current research in this field of "membrane based AHCs," shows promise, yet still lacks the modularity to create large sensor arrays similar to those in nature.
This paper presents a novel bilayer based AHC platform, developed for array implementation by applying some of the core design principles of biological hair cells. These principles are translated into key design, fabrication and material considerations toward improved sensor sensitivity and modularity. Single hair cell responses to base excitation and short air pulses are to investigate the dynamic coupling between hair and bilayer membrane transducer. In addition, a spectral analysis of the AHC system under varying voltages and air flow velocities helps to build simple, predictive models for the sensitivity properties of the AHC. And finally, based on these results, we implement a spatial sensing strategy that involves mapping frequency content to stimulus location by "tuning" linear, three-unit arrays of AHCs.
Individual AHC sensors characterization results demonstrate peak current outputs in the nanoamp range and measure flow velocities as high as 72 m/s. Characterization of the AHC response to base excitation and air pulses show that membrane current oscillates with the first three bending modes of the hair. Output magnitudes reflect of vibrations near the base of the hair. A 2 degree-of-freedom Rayleigh-Ritz approximation of the system dynamics yields estimates of 19 N/m and 0.0011 Nm/rad for the equivalent linear and torsional stiffness of the hair's hydrogel base, although double modes suggest non-symmetry in the gel's linear stiffness. The sensor output scales linearly with applied voltage (1.79 pA/V), avoiding a higher-order dependence on electrowetting effects. The free vibration amplitude of the sensor also increases in a linear fashion with applied airflow pressure (3.39 pA/m s??).
Array sensing tests show that the bilayers' consistent spectral responses allow for an accurate localization of the airflow source. However, temporal variations in bilayer size affect sensitivity properties and make airflow magnitude estimation difficult. The overall successful implementation of the array sensing method validates the sensory capability of the bilayer based AHC. / Master of Science
|
5 |
Novel Bio-inspired Aquatic Flow SensorsPinto, Preston Albert 23 July 2012 (has links)
Inspired by the roles of hair cells in nature, this study aims to develop and characterize two new sets of novel flow sensors. One set of sensors developed and studied in this work are flow sensors fabricated using carbon nanomaterials. These sensors are made by embedding carbon nanotubes (CNT) and carbon nanohorns (CNH) into a polymeric substrate and then tested by flowing a conductive aqueous solution over the surface of the exposed CNT and CNH. In response, a flow-dependent voltage is generated. The surface coverage and the electrical relationship between the sensor and water is investigated and the voltage measurements of sensors with different levels of resistance were tested in varying fluid velocities. In response to these fluid velocities, the least resistive sensor showed small, but detectable changes in voltages, while higher resistance sensors showed less response. In addition, plasma treatment of the carbon nanomaterial/PDMS films were conducted in order to render the PDMS on the surface hydrophilic and in turn to pull more fluid towards the carbon material. This showed to improve the sensitivity of the flow sensors. This work also builds on previous research by investigating the flow dependent electrical response of a "skin"-encapsulated artificial hair cell in an aqueous flow. An artificial cell membrane is housed in a flexible polyurethane substrate and serves as the transduction element for the artificial hair cell. Flow experiments are conducted by placing the bio-inspired sensor in a flow chamber and subjecting it to pulse-like flows. This study demonstrates that the encapsulated artificial hair cell flow sensor is capable of sensing changes in flow through a mechanoelectrical response and that its sensing capabilities may be altered by varying its surface morphology. Furthermore, the sensor's response and dynamics as a function of its surface morphology and structural properties are investigated through synchronized motion tracking of the hair with a laser vibrometer and current measurements across the artificial cell membrane. / Master of Science
|
Page generated in 0.0834 seconds