• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • 3
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 10
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

CSCDR : um classificador baseado em seleção clonal com redução de células de memória

Oliveira, Luiz Otávio Vilas Bôas January 2012 (has links)
O sistema imunológico dos vertebrados é extremamente complexo, sendo responsável por proteger o organismo contra agentes causadores de doenças. Para funcionar apropriadamente, é necessário que seus componentes reconheçam de forma eficaz os elementos patógenos, a fim de neutralizá-los, e também os elementos do próprio organismo, de forma a não reagirem a estes. Estas e outras características são similares àquelas exigidas em soluções para problemas de engenharia e computação. Desta forma, os sistemas imunológicos artificiais utilizam a contraparte biológica como metáfora para o desenvolvimento de diversas ferramentas computacionais utilizadas nas mais diversas tarefas. Esta dissertação utiliza os conceitos apresentados pelos sistemas imunológicos artificiais para o desenvolvimento de um novo algoritmo de aprendizado supervisionado, baseado principalmente no mecanismo de seleção clonal. O método proposto neste trabalho, denominado clonal selection classifier with data reduction (CSCDR), utiliza uma função de aptidão com base no número de classificações corretas e incorretas apresentadas por cada anticorpo. O algoritmo tenta maximizar este valor através do processo de seleção clonal, envolvendo mutação, maturação de afinidade e seleção dos melhores indivíduos, transformando a fase de treinamento em um problema de otimização. Isto leva a anticorpos com maior representatividade e, portanto, diminui a quantidade de protótipos gerados ao final do algoritmo. Experimentos em bases de dados sintéticas e bases de dados de problemas reais, utilizadas como benchmark para problemas de aprendizagem de máquina, demonstram a eficácia do algoritmo CSCDR como técnica de classificação. Quando comparado a outros classificadores conhecidos da literatura, o CSCDR apresenta desempenho similar e, quando comparado a algoritmos baseados em instâncias, o mesmo utiliza menores quantidades de protótipos para representar os dados, mantendo o desempenho. / The vertebrate immune system is an extremely complex system, being responsible for protecting the body against disease causing agents. To function properly, it is necessary its components effectively recognize the pathogens in order to neutralize them, and also elements of the body itself, so as not to react to these. These and other features are similar to those required solutions to problems in engineering and computing. Thus, artificial immune systems use biological counterpart as a metaphor for development of several computational tools used in various tasks. This dissertation uses the concepts presented by the artificial immune systems to develop a new supervised learning algorithm, based mainly on the mechanism of clonal selection. The method proposed in this work, named clonal selection classifier with data reduction (CSCDR), uses a fitness function based on the number of correct and incorrect classifications made by each antibody. The algorithm tries to maximize this value through the clonal selection process, involving mutation, affinity maturation and selection of the best individuals, turning the training phase in an optimization problem. This leads to more representative antibodies and therefore decreases the amount of prototypes generated at the end of the algorithm. Experiments on synthetic databases and real problem databases, used as benchmark to machine learning problems, demonstrate the effectiveness of the CSCDR algorithm as a classification technique. When compared to other well known classifiers in literature, CSCDR shows similar performance and when compared to instance based algorithms, CSCDR utilizes a smaller amount of prototypes to represent the data maintaining the same performance.
12

Spamming mobile botnet detection using computational intelligence

Vural, Ickin January 2013 (has links)
This dissertation explores a new challenge to digital systems posed by the adaptation of mobile devices and proposes a countermeasure to secure systems against threats to this new digital ecosystem. The study provides the reader with background on the topics of spam, Botnets and machine learning before tackling the issue of mobile spam. The study presents the reader with a three tier model that uses machine learning techniques to combat spamming mobile Botnets. The three tier model is then developed into a prototype and demonstrated to the reader using test scenarios. Finally, this dissertation critically discusses the advantages of having using the three tier model to combat spamming Botnets. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Computer Science / unrestricted
13

Multi-Circle Detections for an Automatic Medical Diagnosis System

Lu, Dingran 01 May 2012 (has links) (PDF)
Real-time multi-circle detection has been a challenging problem in the field of biomedical image processing, due to the variable sizes and non-ideal shapes of cells in microscopic images. In this study, two new multi-circle detection algorithms are developed to facilitate an automatic bladder cancer diagnosis system: one is a modified circular Hough Transform algorithm integrated with edge gradient information; and the other one is a stochastic search approach based on real valued artificial immune systems. Computer simulation results show both algorithms outperform traditional methods such as the Hough Transform and the geometric feature based method, in terms of both precision and speed.
14

Learning Strategies in Multi-Agent Systems - Applications to the Herding Problem

Gadre, Aditya Shrikant 14 December 2001 (has links)
"Multi-Agent systems" is a topic for a lot of research, especially research involving strategy, evolution and cooperation among various agents. Various learning algorithm schemes have been proposed such as reinforcement learning and evolutionary computing. In this thesis two solutions to a multi-agent herding problem are presented. One solution is based on Q-learning algorithm, while the other is based on modeling of artificial immune system. Q-learning solution for the herding problem is developed, using region-based local learning for each individual agent. Individual and batch processing reinforcement algorithms are implemented for non-cooperative agents. Agents in this formulation do not share any information or knowledge. Issues such as computational requirements, and convergence are discussed. An idiotopic artificial immune network is proposed that includes individual B-cell model for agents and T-cell model for controlling the interaction among these agents. Two network models are proposed--one for evolving group behavior/strategy arbitration and the other for individual action selection. A comparative study of the Q-learning solution and the immune network solution is done on important aspects such as computation requirements, predictability, and convergence. / Master of Science
15

Computer Fault Tolerance Study Inspired By The Immune System

Canibek, Atif Deger 01 December 2005 (has links) (PDF)
Since the advent of computers numerous approaches have been taken to create hardware systems that provide a high degree of reliability even in the presence of errors. This study seeks to address the problem from a biological perspective using the human immune system as a source of inspiration. The immune system uses many ingenious methods to provide reliable operation in the body and so may suggest how similar methods can be used in the design of reliable systems. This study provides a brief introduction into a relatively new discipline: artificial immune systems (AIS) and demonstrates a new application of AIS with an immunologically inspired approach to fault tolerance. It is shown a finite state machine can be provided with a hardware immune system to provide a novel form of fault detection giving the ability to detect faulty states during a normal operating cycle. It is called immunotronics.
16

Sistema de coleta, análise e detecção de código malicioso baseado no sistema imunológico humano /

Oliveira, Isabela Liane. January 2012 (has links)
Orientador: Adriano Mauro Cansian / Banca: Marcos Antonio Cavenaghi / Banca: Rafael Duarte Coelho dos Santos / Resumo: Os códigos maliciosos (malware) podem causar danos graves em sistemas de computação e dados. O mecanismo que o sistema imunológico humano utiliza para proteger e detectar os organismos que ameaçam o corpo humano demonstra ser eficiente e pode ser adaptado para a detecção de malware atuantes na Internet. Neste contexto, propõe-se no presente trabalho um sistema que realiza coleta distribuída, análise e detecção de programas maliciosos, sendo a detecção inspirada no sistema imunológico humano. Após a coleta de amostras de malware da Internet, as amostras são analisadas de forma dinâmica de modo a proporcionar rastros de execução em nível do sistema operacional e dos fluxos de rede que são usados para criar um modelo comportamental e para gerar uma assinatura de detecção. Essas assinaturas servem como entrada para o detector de malware e atuam como anticorpos no processo de detecção de antígenos realizado pelo sistema imunológico humano. Isso permite entender o ataque realizado pelo malware e auxilia nos processos de remoção de infecções / Abstract: Malicious programs (malware) can cause severe damages on computer systems and data. The mechanism that the human immune system uses to detect and protect from organisms that threaten the human body is efficient and can be adapted to detect malware attacks. In this context, we propose a system to perform malware distributed collection, analysis and detection, this last inspired by the human immune system. After collecting malware samples from Internet, they are dynamically analyzed so as to provide execution traces at the operating system level and network flows that are used to create a behavioral model and to generate a detection signature. Those signatures serve as input to a malware detector, acting as the antibodies in the antigen detection process performed by immune human system. This allows us to understand the malware attack and aids in the infection removal procedures / Mestre
17

Geração, seleção e combinação de componentes para ensembles de redes neurais aplicadas a problemas de classificação / Generation, selection and combination of components in neural network ensembles applied to classification problems

Coelho, Guilherme Palermo, 1980- 29 September 2006 (has links)
Orientador: Fernando Jose Von Zuben / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e Computação / Made available in DSpace on 2018-08-11T19:03:12Z (GMT). No. of bitstreams: 1 Coelho_GuilhermePalermo_M.pdf: 2968179 bytes, checksum: bbea7c9c565907f86eee09155421bfa3 (MD5) Previous issue date: 2006 / Resumo: O uso da abordagem ensembles tem sido bastante explorado na última década, por se tratar de uma técnica simples e capaz de aumentar a capacidade de generalização de soluções baseadas em aprendizado de máquina. No entanto, para que um ensemble seja capaz de promover melhorias de desempenho, os seus componentes devem apresentar bons desempenhos individuais e, ao mesmo tempo, devem ter comportamentos diversos entre si. Neste trabalho, é proposta uma metodologia de criação de ensembles para problemas de classificação, onde os componentes são redes neurais artificiais do tipo perceptron multicamadas. Para que fossem gerados bons candidatos a comporem o ensemble, atendendo a critérios de desempenho e de diversidade, foi aplicada uma meta-heurística populacional imuno-inspirada, denominada opt-aiNet, a qual é caracterizada por definir automaticamente o número de indivíduos na população a cada iteração, promover diversidade e preservar ótimos locais ao longo da busca. Na etapa de seleção dos componentes que efetivamente irão compor o ensemble, foram utilizadas seis técnicas distintas e, para combinação dos componentes selecionados, foram adotadas cinco estratégias. A abordagem proposta foi aplicada a quatro problemas de classificação de padrões e os resultados obtidos indicam a validade da metodologia de criação de ensembles. Além disso, foi verificada uma dependência entre o melhor par de técnicas de seleção e combinação e a população de indivíduos candidatos a comporem o ensemble, assim como foi feita uma análise de confiabilidade dos resultados de classificação / Abstract: In the last decade, the ensemble approach has been widely explored, once it is a simple technique capable of increasing the generalization capability of machine learning based solutions. However, an ensemble can only promote performance enhancement if its components present good individual performance and, at the same time, diverse behavior among each other. This work proposes a methodology to synthesize ensembles for classification problems, where the components of the ensembles are multi-layer perceptrons. To generate good candidates to compose the ensemble, meeting the performance and diversity requirements, it was applied a populational and immune-inspired metaheuristic, named opt-aiNet, which is characterized as being capable of automatically determining the number of individuals in the population at each iteration, promoting diversity and preserving local optima through the search. In the component selection phase, six distinct techniques were applied and, to combine these selected components, five strategies were adopted. The proposed approach was applied to four pattern classification problems and the obtained results indicated the validity of the methodology to synthesize ensembles. It was also verified a dependence of the best pair of selection and combination techniques on the population of candidates to compose the ensemble, and it was made an analysis of the confidence of the classification results / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
18

Umělé imunitní systémy pro detekci spamů / Artificial Immune Systems for Spam Detection

Hohn, Michal January 2011 (has links)
This work deals with creating a hybrid system based on the aggregation of artificial immune system with appropriate heuristics to make the most effective spam detection. This work describes the main principles of biological and artificial immune system and conventional techniques to detect spam including several classifiers. The developed system is tested using well known database corpuses and a comparison of the final experiments is made.
19

Realizace spamového filtru na bázi umělého imunitního systému / Spam Filter Implementation on the Basis of Artificial Immune Systems

Neuwirth, David January 2009 (has links)
Unsolicited e-mails generally present a major problem within the e-mail communication nowadays. There exist several methods that can detect spam and distinguish it from the requested messages. The theoretical part of the masters thesis introduces the ways of detecting unsolicited messages by using artificial immune systems. It presents and subsequently analyses several methods of the artificial immune systems that can assist in the fight against spam. The practical part of the masters thesis deals with the implementation of a spam filter on the basis of the artificial immune systems. The project ends with comparison of effectiveness of the newly designed spam filter and the one which uses common methods for spam detection.
20

Designing an Artificial Immune inspired Intrusion Detection System

Anderson, William Hosier 08 December 2023 (has links) (PDF)
The domain of Intrusion Detection Systems (IDS) has witnessed growing interest in recent years due to the escalating threats posed by cyberattacks. As Internet of Things (IoT) becomes increasingly integrated into our every day lives, we widen our attack surface and expose more of our personal lives to risk. In the same way the Human Immune System (HIS) safeguards our physical self, a similar solution is needed to safeguard our digital self. This thesis presents the Artificial Immune inspired Intrusion Detection System (AIS-IDS), an IDS modeled after the HIS. This thesis proposes an architecture for AIS-IDS, instantiates an AIS-IDS model for evaluation, conducts a robust set of experiments to ascertain the efficacy of the AIS-IDS, and answers key research questions aimed at evaluating the validity of the AIS-IDS. Finally, two expansions to the AIS-IDS are proposed with the goal of further infusing the HIS into AIS-IDS design.

Page generated in 0.058 seconds