Spelling suggestions: "subject:"artificial neural networks. eng"" "subject:"aartificial neural networks. eng""
1 |
Utilização do sensoriamento remoto orbital e redes neurais artificiais no mapeamento de macrófitas aquáticas emersas em grandes reservatórios /Espinhosa, Miriam Cristina. January 2004 (has links)
Orientador: Maria de Lourdes Bueno Trindade Galo / Resumo: A utilização de dados de Sensoriamento Remoto em conjunto com técnicas de processamento digital e análise de imagens tem possibilitado o desenvolvimento de estudos integrados, com vistas ao monitoramento dos recursos naturais. Uma maneira de representar esses dados é através de mapas temáticos, obtidos por métodos de classificação multiespectral. Para a classificação de dados de Sensoriamento Remoto, a utilização de Redes Neurais Artifíciais tem se apresentado como uma alternativa vantajosa em relação aos classificadores baseados em conceitos estatísticos, uma vez que nenhuma hipótese prévia sobre a distribuição dos dados a serem classificados é exigida. Assim, esse trabalho teve como objetivo detectar a ocorrência e mapear a dispersão espacial de plantas aquáticas emersas em cinco reservatórios ao longo do rio Tietê-SP (Barra Bonita, Bariri, Ibitinga, Promissão e Nova Avanhandava) através da classificação por Redes Neurais Artifíciais...(Resumo completo, clicar acesso eletrônico abaixo) / Mestre
|
2 |
Sistema inteligente para previsão de carga multinodal em sistemas elétricos de potência /Altran, Alessandra Bonato. January 2010 (has links)
Resumo: A previsão de carga, em sistemas de energia elétrica, constitui-se numa atividade de grande importância, tendo em vista que a maioria dos estudos realizados (fluxo de potência, despacho econômico, planejamento da expansão, compra e venda de energia, etc.) somente poderá ser efetivada se houver a disponibilidade de uma boa estimativa da carga a ser atendida. Deste modo, visando contribuir para que o planejamento e operação dos sistemas de energia elétrica ocorram de forma segura, confiável e econômica, foi desenvolvida uma metodologia para previsão de carga, a previsão multinodal, que pode ser entendida como um sistema inteligente que considera vários pontos da rede elétrica durante a realização da previsão. O sistema desenvolvido conta com o uso de uma rede neural artificial composta por vários módulos, sendo esta do tipo perceptron multicamadas, cujo treinamento é baseado no algoritmo retropropagação. Porém, foi realizada uma modificação na função de ativação da rede, em substituição à função usual, a função sigmoide, foram utilizadas as funções de base radial. Tal metodologia foi aplicada ao problema de previsão de cargas elétricas a curto-prazo (24 horas à frente) / Abstract: Load forecasting in electric power systems is a very important activity due to several studies, e.g. power flow, economic dispatch, expansion planning, purchase and sale of energy that are extremely dependent on a good estimate of the load. Thus, contributing to a safe, reliable, economic and secure operation and planning this work is developed, which is an intelligent system for multinodal electric load forecasting considering several points of the network. The multinodal system is based on an artificial neural network composed of several modules. The neural network is a multilayer perceptron trained by backpropagation where the traditional sigmoide is substituted by radial basis functions. The methodology is applied to forecast loads 24 hours in advance / Orientador: Carlos Roberto. Minussi / Coorientador: Francisco Villarreal Alvarado / Banca: Anna Diva Plasencia Lotufo / Banca: Maria do Carmo Gomes da Silveira / Banca: Gelson da Cruz Junior / Banca: Edmárcio Antonio Belati / Doutor
|
3 |
Análise de superfícies de peças retificadas com o uso de redes neurais artificiais /Paula, Wallace Christian Feitosa de. January 2007 (has links)
Orientador: Paulo Roberto de Aguiar / Banca: José Alfredo Covolan Ulson / Banca: Amauri Hassui / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Resumo: O cenário mundial tem apresentado um ambiente de alta competição industrial, pressionando cada vez mais as indústrias a tornarem seus processos produtivos mais eficientes. Além da eficiência, a precisão é de extrema importância num ambiente onde as empresas tentam manter padrões e procedimentos que se adaptem às normas internacionais. Um dos processos de acabamento mais utilizados na fabricação de componentes mecânicos de precisão é a retificação, e um dos critérios preponderantes na qualidade final de um produto é a integridade superficial, influenciada principalmente por fatores térmicos e mecânicos. Assim, o objetivo deste trabalho foi investigar as relações intrínsecas entre a qualidade superficial de peças retificadas e o comportamento dos sinais correspondentes de emissão acústica e potência de corte para retificação tangencial plana utilizando-se redes neurais artificiais. A caracterização da qualidade superficial das peças foi analisada por meio de parâmetros de queima superficial, rugosidade e microdureza. Verificou-se que o uso de redes neurais artificiais na caracterização da qualidade de superfícies de peças retificadas obteve bons resultados, apresentando-se como uma proposta interessante para implementação de sistemas inteligentes em ambientes industriais. / Abstract: The world scenario has presented a high industrial competition, pressuring each time more the industries to change its more efficient productive processes. Besides efficiency, the precision is of extremely in a world where the companies try to maintain patterns and procedures that fit international demands. One of the most used final processes in the manufacturing of mechanical precision components is grinding, and one of the main criteria in the final quality of a product is its surface integrity, mainly influenced by thermal and mechanical factors. Thus, the objective of this work is to investigate the existing relationships between the surface quality of grinding workpieces and the behavior of correspondent signal of acoustic emission and cutting power to the surface grinding machines using artificial neural network. The characterization of the surface quality of the workpieces was analyzed through surface burning parameters, surface roughness and microhardness. It was verified that the use of artificial neural networks in the characterization of quality of surfaces grinding workipieces had positive results, being presented as an interesting proposal to implementation of intelligent systems in the industrial environments. / Mestre
|
4 |
Reconhecimento de padrões lexicais por meio de redes neurais /Babini, Maurizio. January 2006 (has links)
Orientador: Norian Marranghello / Banca: Aledir Silveira Pereira / Banca: Furio Damiani / Resumo: A compreensão da linguagem humana é uma das tarefas mais difíceis do Processamento da Linguagem Natural (PLN) e de modo mais geral da Automação e da Inteligência Artificial (IA). O objetivo desta pesquisa é estudar os mecanismos que permitem utilizar uma rede neural artificial para poder interpretar textos. Este trabalho deveria ser utilizado, futuramente, para criar uma interface em um ambiente de co-projeto, capaz de agrupar/classificar termos/conceitos, reconhecendo padrões textuais. Para alcançar nossos objetivos de pesquisa em nível de Mestrado, utilizamos o modelo semântico de Bernard Pottier, e uma Rede Neural Artificial de Kohonen. A escolha do modelo de Bernard Pottier deve-se ao fato de que este autor é um dos mais conceituados lingüistas da atualidade e que seu modelo é largamente utilizado por pesquisadores de vários paises, tendo sido, assim, comprovada a sua validade. No que diz respeito à rede de Kohonen, acreditamos que seja a mais indicada para este tipo de aplicação, tendo em vista o fato de que essa rede tenta imitar o funcionamento do cérebro humano, em particular, reproduzindo o mapeamento de suas áreas especializadas, e tendo como hipótese de partida que, no córtex humano, conceitos similares ou de áreas afins distribuem-se em áreas limítrofes. A escolha desse tipo de rede para o nosso trabalho deve-se, outrossim, ao fato de que ela utiliza um tipo de treinamento competitivo e não-supervisionado que permite organizar os vetores (dados) de entrada em agrupamentos (clusters). / Abstract: The understanding of human language is one of the most difficult tasks of Natural Language Processing (NLP), and, in general, of Automation and Artificial Intelligence (AI). The aim of our research is to study the mechanisms that allow using an artificial neural network for interpreting text. Later, our work should be used to create an interface, in a hardware/software co-design environment, capable of clustering/classifying terms/concepts, and recognizing text patterns. In order to achieve the objectives of our research, we used the semantic model of Bernard Pottier, and a Kohonen Artificial Neural Network. The choice of Bernard Pottier's model was motivated by the fact that the author is one of the most eminent linguists nowadays, and his model is largely used by researchers in many countries, thus proving the validity of his proposal. About the Kohonen net, we believe that it is the most appropriate net for this kind of application, due to the fact that this net tries to imitate the functioning of the human brain, particularly reproducing the map of its specialized areas, as well as due to the fact that this net has as initial hypothesis that, in the human cortex, similar concepts or concepts of similar areas are distributed in closed areas. Another reason for the choice of this kind of net in our study is that it uses a competitive and non-supervising training, that allows organizing entry vectors (data) in clusters. / Mestre
|
5 |
Estimação de variáveis físico-químicas de solo por espectroscopia no visível e no infravermelho próximo através de sistemas inteligentes /Marconato, Evandro Sérgio. January 2011 (has links)
Orientador: Paulo José Amaral Serni / Banca: Roberto Lyra Villas Boas / Banca: José Alfredo Covolan Ulson / Resumo: O agronegócio possui participação fundamental no cenário econômico brasileiro, com reflexos importantes sobre o produto interno bruto, as exportações e a geração de empregos. A viabilidade econômica do setor agropecuário a partir da redução dos custos de produção, do aumento da produtividade e da redução ambiental causado pelo excesso de insumos, depende da Agricultura de Precisão. As informações referentes à variabilidade de diferentes propriedades do solo dentro da lavoura são fundamentais no processo de tomada de decisão. Uma das limitações da Agricultura de Precisão, a incapacidade de se obter as propriedades do solo de maneira rápida e com baixo custo, tem levado pesquisadores a desenvolver sensores para análise de solo em tempo real, sendo a espectroscopia uma das técnicas utilizadas. Neste trabalho, redes neurais artificiais (RNA) foram utilizadas como ferramenta inteligente para, a partir de uma massa de dados fornecidas por um sensor de solo em tempo real que utiliza a técnica de espectroscopia, estimar os teores de nitrogênio total e umidade do solo. O trabalho apresenta também uma comparação entre o resultado das redes neurais artificiais e o resultado da estimação de um software de análise quimiométrica utilizando a mesa massa de dados. o desempenho apresentado pelas redes neurais artificiais mostra ser possível sua utilização como ferramenta alternativa aos softwares de análise quimiométrica, além de permitir embarcar a inteligência de estimação, o que pode ser um passo preliminar para o desenvolvimento de equipamentos de baixo custo para análise de solo em tempo real / Abstract: Agribusiness has a fundaental role in the Brazilian economy, with important consequences on the gross domestic produtt, exports and job generation. The economic viability of the agricultural sector by reducing production costs, increasing productivity and reducing the environmental impact caused by excessive inputs, depends on Precision Agriculture. Information concerning the variability of different soil properties whitin the crop is essential in the process of decision making. One of the limitations of precision agriculture, the inability to obtain the soil characteristics quickly and cost effectively, has led researchers to develop sensors for soil analysis in real time, using the technique of spectroscopy. This work used artificial neural networks (ANN) as a smart tool for estimating the total nitrogen content and soil moisture from data provided by a real time soil sensor using the technique of spectroscopy. This work also presents a comparison between the estimation results of the artificial neural networks and the estimation results of a chemometric analysis software using the same database The performance of the neural networks shows its possible use as can alternative tool to chemometric analysis software and allows the estimative intelligence to be embedded, which may be a preliminary step for the development of low-cost equipment for real-time soil analysis / Mestre
|
6 |
Geoprocessamento e computação inteligente : possibilidades, vantagens e necessidades /Pereira, Carlos José de Almeida. January 2008 (has links)
Orientador: Lucia Helena de Oliveira Gerardi / Banca: Dulce Consuelo Andreatta Whitaker / Banca: João Francisco de Abreu / Banca: Lindon Fonseca Matias / Banca: Mônica Giacomassi de Menezes de Magalhães / Resumo: As técnicas de análise de dados e de busca de soluções fornecidas pela Computação Inteligente tiveram, nos últimos tempos, um grande avanço em seu desenvolvimento. Essas técnicas têm sido utilizadas com eficácia e eficiência no tratamento de problemas complexos e/ou que possuam uma grande quantidade de dados a serem processados. A integração destas técnicas com as ferramentas computacionais de produção e análise de informações geográficas (Geoprocessamento) é, portanto, muito vantajosa, especialmente com relação à grande quantidade de dados geralmente envolvida nas questões de natureza espacial. Este trabalho apresenta dois exemplos de uso de técnicas de Computação Inteligente em procedimentos de produção e análise de informações geográficas: um Sistema de Raciocínio Nebuloso (baseado na Lógica Nebulosa) para a construção de um mapa de fertilidade de solos, e uma Rede Neural Artificial para a identificação de agrupamentos espaciais em dados sócio-econômicos. Os dois exemplos foram conduzidos utilizando-se um software especialmente construído para esta finalidade, denominado GAIA - Geoprocessamento Apoiado por Inteligência Artificial -, e que doravante está disponível como Software Livre para qualquer pesquisador interessado em utilizar estas ferramentas. O estudo conclui que o uso das técnicas provenientes da computação inteligente, em comparação com técnicas tradicionais de análise de dados, contribuiu para um aumento da qualidade dos resultados obtidos. / Abstract: Data analysis and problem solving techniques supplied by Soft Computing have had, lately, a great advance in their development. These techniques have been used with effectiveness and efficiency to deal with complex problems and/or problems that have too much data to be processed. The integration of such techniques with the tools for computational geographic information analysis (Geocomputation) is therefore very advantageous, especially in relation to the great quantity of data normally involved in spatial matters. This study presents two examples on how to use Soft Computing techniques in conjunction with geographic information analysis procedures: a Fuzzy Reasoning System (based on Fuzzy Logic) to build a soil fertility map, and an Artificial Neural Network to identify spatial clusters in socioeconomic data. Both examples were conducted using a software specifically developed towards this objective, called GAIA - Artificial Intelligence Supported Geocomputation, from now on available as a Free Software to any interested researcher. The study arrives at the conclusion that the use of soft computing techniques, as compared to classical procedures, leads to an increased quality on the final results. / Doutor
|
7 |
Identificação de falhas estruturais usando sensores e atuadores piezelétricos e redes neurais artificiais /Furtado, Rogério Mendonça. January 2004 (has links)
Orientador : Vicente Lopes Júnior / Banca: João Carlos Mendes Carvalho / Banca: Carlos Roberto Minussi / Resumo: A proposta deste trabalho é a obtenção de uma metodologia robusta para identificação de falhas estruturais combinando as vantagens de duas metodologias, que não são baseadas em modelos matemáticos, ou seja: impedância elétrica obtida com atuador e sensor piezocerâmico(materiais inteligentes) e redes neurais artificiais. O termo materiais inteligentes (smart materials) conhecido também por material ativo é dado a uma classe de material que exibe propriedades não encontradas em materiais convencionais. Alguns destes materiais são: compostos de materiais piezelétricos, eletrorresistivo e magnetorresistivo, fluidos e sólidos electro-reológicos, e outros. Uma das principais características do PZT (Titanato Zirconato de Chumbo), que permite utilizá-lo como sensor e atuador, é o efeito piezelétrico, ou seja, a aplicação de um campo elétrico resulta em deformação do material (efeito inverso), enquanto, a aplicação de tensão mecânica resulta no surgimento de um campo elétrico (efeito direto). Estas características associadas ao conceito de impedância elétrica e ao conceito de falha métrica permitem a localização e o monitoramento da falha. Esta técnica utiliza altas freqüências e excita os modos locais, proporcionando, assim, o monitoramento de qualquer mudança da impedância mecânica estrutural na região de influência do PZT. Redes neurais artificiais (RNA) fazem parte de um amplo conceito chamado inteligência artificial. Redes neurais têm sua base associada ao funcionamento do cérebro humano, que após treinamento possuem a capacidade de "aprender". Esta ciência é objeto de estudo em diversos centros de pesquisa e, embora já tenha grande aplicabilidade, o sucesso de sua utilização depende do caso em que está sendo aplicada e de certa sutileza do projetista, uma vez que o processo ainda é empírico e teorias ainda... (Resumo completo, clicar acesso eletrônico abaixo). / Abstract: The proposal of this work is the obtaining of a robust methodology for identification of structural faults combining the advantages of two methodologies, which are not based on mathematical models. The methodology applies electric impedance technique, obtained with actuator and sensor piezoceramic (smart materials), and artificial neural networks. The term "smart materials" is given for a material class that not exhibits properties found in conventional materials. Some of these materials are: composed of piezoelectric material, electrostrictive and magnetostrictive, electrorheological fluids and solids shape memory alloys, and others. One of the main characteristics of PZT (Lead Zirconate Titanate), that allows to use it as sensor and actuator, is the piezoelectric effect, where the application of an electric field results in deformation of the material (inverse effect), while the application of mechanical tension results in the appearance of an electric field (direct effect). These characteristics associated to the concept of electric impedance and the concept of metric fault allow the location and the monitoring of the fault. This technique uses high frequencies and low voltage and it excites local modes, providing, the monitoring of any change on the structural mechanical impedance in the area of influence of the PZT. Artificial Neural Networks (ANN) are part of a wide concept called artificial intelligence. Neural networks has its base associated to the operation of the human brain, that after training possess the capacity "to learn". This science is a study object in several research centers and, although it already has great application. The success of its use depends of the case and planner's certain keenness, once the process is still empiric and theories are still being formulated. Several conceptions of neural networks... (Complete abstract, click electronic address below). / Mestre
|
8 |
Previsão de carga multinodal utilizando redes neurais de regressão generalizada /Nose Filho, Kenji. January 2011 (has links)
Orientador: Anna Diva Plasencia Lotufo / Banca: Percival Bueno Araújo / Banca: Walmir de Freitas Filho / Resumo: Neste trabalho, dá-se ênfase à previsão de carga multinodal, também conhecida como previsão de carga por barramento. Para realizar esta demanda, há necessidade de dispor de uma técnica que proporcione a precisão desejada, seja confiável e de baixo tempo de processamento. O conhecimento prévio das cargas locais é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Para realizar a previsão de carga multinodal foram empregadas duas metodologias, uma que prevê as cargas individualmente e outra que utiliza as previsões dos fatores de participação e a previsão de carga global. O principal objetivo deste trabalho é elaborar um modelo de previsor de carga de curto prazo, genérico e que pode ser aplicado na previsão de carga multinodal. Para tanto, utilizou-se redes neurais de regressão generalizada (GRNN), cujas entradas são compostas de variáveis exógenas globais e de cargas locais, sem a necessidade da inclusão de variáveis exógenas locais. Ainda, projetou-se uma nova arquitetura de rede neural artificial, baseada na GRNN, além de propor um procedimento para a redução do número de entradas da GRNN e um filtro para o pré-processamento do banco de dados de treinamento. Os dados, para testar as metodologias e as redes neurais artificiais, são referentes a um subsistema de distribuição de energia elétrica da Nova Zelândia composto por nove subestações / Abstract: In this work, it is emphasized the multi-nodal load forecast, also known as bus load forecast. To perform this demand, there it is necessary a technique that is precise, trustable and has a short-time processing. The previous knowledge of the local loads is of extreme importance to the planning and operation of the electrical power and energy systems. To perform the multi-nodal load forecast is employed two different methodologies, one that forecast the loads individually and another that uses the participation factors forecasts and the global load forecast. The main objective of this work is to elaborate a generic model of a short-term load forecaster, which can be applied to the multi-nodal load forecast. For this, it was used general regression neural networks (GRNN), with inputs based on external global factors and local loads, without the need of external local factors. Still, it was developed a new architecture of an artificial neural network based on a GRNN and proposed a procedure to reduce the number of input variables of the GRNN and a filter for preprocessing the training data. The dataset, to test the methodologies and the artificial neural networks, refers to a New Zealand electrical distribution subsystem composed of nine substations / Mestre
|
9 |
Modelagem de um motor de indução trifásico operando com tensões desequilibradas por meio de redes neurais artificiais /Oliveira, José Eduardo Alves de. January 2011 (has links)
Orientador: Paulo José Amaral Serni / Banca: Alessandra Goedtel / Banca: José Alfredo Covolan Ulson / Resumo: O desequilíbrio de tensão nos sistemas elétricos pode provocar problemas indesejáveis na operação de equipamentos, principalmente nos motores de indução trifásicos, devido à importância destes motores em ambientes industriais. A utilização de modelos convencionais para a modelagem destes motores operando com tensões desequilibradas impõe resultados imprecisos e a obtenção de modelos adequados apresenta grande complexidade em função das assimetrias e não linearidades. Neste contexto, a utilização de ferramentas inteligentes, mais especificamente, redes neurais artificiais (RNA), reduz substancialmente a tarefa de modelagem, permitindo sua utilização sob condições de assimetrias e não linearidades. Assim, uma bancada de testes foi montada para a aquisição de dados experimentais de um motor de indução trifásico de 1 CV, 4 polos, 220V/380V, tipo gaiola de esquilo. Os dados coletados foram usados para o treinamento e validação de uma RNA que modela a relação entre as tensões, correntes e a potência no eixo. Os resultados experimentais foram comparados com os obtidos com a RNA e com o modelo dinâmico, e constatou-se que a modelagem por meio de RNA é adequada para descrever matematicamente o comportamento de motores de indução trifásicos operando com tensões desequilibradas / Abstract: Unbalanced voltages in electrical systems can deteriorate the performance of equipments and cause potential safety hazards and be harmful for the respective applications, especially in the three-phase induction motors, the most common energy receivers in industrial. The analysis of three phase induction motors under supply voltage unbalance condictions using the well-known symmetrical components analysis provide inaccurate results, and correct models are laborious, due to the complex nature of voltage unbalance factor like asymmetries and nonlinearities. In this context, the use of intelligent tools, specifically artificial neural networks (ANN), significantly reduces the modeling task and allowing the use under conditions of asymmetries and nonlinearities. Thus, a workbench tests was buit for testing of the 4 pole, 220V/380V, 1 CV squirrel-cage induction motor. Experimental set up for testing were used to ANN's training and validation. The ANN's model showed the relationship between the voltages, currents and shaft power. The results of experimental investigation and computer calculations (ANN and dynamic model) were compared and the results indicate that the ANN is adequate model that makes it possible to mathematically describe an induction motors operating with unbalanced voltage / Mestre
|
10 |
Proposta de um dicionário eletrônico terminológico onomasiológico bilíngue inglês-português no domínio das redes neurais artificiais /Silva, Eduardo Batista da. January 2009 (has links)
Orientador: Maurizio Babini / Banca: Ricardo Baptista Madeira / Banca: Eli Nazareth Bechara / Resumo: O presente trabalho tem como objetivo principal aplicar o modelo de dicionário terminológico onomasiológico bilíngüe, proposto por Babini (2001), na elaboração de um dicionário eletrônico inglês-português e português-inglês dos termos fundamentais das Redes Neurais Artificiais. O dicionário onomasiológico caracteriza-se por permitir a busca de uma unidade lexical ou terminológica a partir de seu conteúdo semântico. Constituímos um corpus de especialidade e um corpus de língua geral com o auxílio do programa computacional WordSmith Tools. A metodologia terminológica foi norteada pela Teoria Comunicativa da Terminologia, que nos auxiliou nas reflexões quanto as diferenças terminológicas existentes entre os dois idiomas estudados. As principais referências metodológicas, que guiaram nossas buscas pelos equivalentes lexicais, foram Felber (1984), Dubuc (1985), Alpizar-Castillo (1995), Cabré (1993, 1999), Berber Sardinha (2001), Barros (2004), Babini (2001a, 2001b). Nosso modelo de dicionário permite dois tipos de pesquisa: semasiológica e onomasiológica. A busca onomasiológica é viabilizada pelo conjunto de semas ou traços semânticos que compõe o conceito de cada termo do dicionário. Foram utilizados o aplicativo MS Access, o gerenciador de banco de dados MySQL e a linguagem de programação PHP. / Abstract: The present thesis majorly aims at applying a bilingual onomasiological terminological dictionary model, proposed by Babini (2001), so as to develop an English-Portuguese and Portuguese-English electronic dictionary of the fundamental terms of the Artificial Neural Networks. The onomasiological dictionary allows the search of a lexical or terminological unit from its semantic content. We constituted a specialty corpus and a general language corpus with the aid of the computational program WordSmith Tools. The methodological approach was guided by the Communicative Terminology Theory, which allowed us to identify the existing differences among the languages studied. The main methodological basis, which guided our search for lexical equivalent, were Felber (1984), Dubuc (1985), Alpizar- Castillo (1995), Cabré (1993, 1999), Berber-Sardinha (2001), Barros (2004), Babini (2001a, 2001b). Our dictionary model allows two types of search: semasiological and onomasiological. The onomasiological search is made viable by a set of semantic traits that make up the concept of each term in the dictionary. The following computational resources were used: MS Access software, the MySQL database management system and the PHP programming language. / Mestre
|
Page generated in 0.0739 seconds