Spelling suggestions: "subject:"artificial satellite orbits"" "subject:"artificial satellite órbits""
31 |
Semianalytical satellite theory and sequential estimationTaylor, Stephen Paul January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Stephen Paul Taylor. / M.S.
|
32 |
A High-Level Framework for the Autonomous Refueling of Satellite ConstellationsSalazar Kardozo, Alexandros 09 April 2007 (has links)
Satellite constellations are an increasingly attractive option for many commercial and military applications. They provide a robust and distributed method of accomplishing the goals of expensive monolithic satellites. Among the many challenges that satellite constellations engender (challenges in control, coordination, disposal, and other areas), refueling is of particular interest because of the many methods one can use to refuel a constellation and the lifetime implications on the satellites.
The present work presents a methodology for carrying out peer-to-peer refueling maneuvers within a constellation. Peer-to-peer (P2P) refueling can be of great value both in cases where a satellite unexpectedly consumes more fuel than it was alloted, and as part of a mixed refueling strategy that will include an outside tanker bringing fuel to the constellation. Without considering mixed-refueling, we formulate the peer-to-peer refueling problem as an assignment problem that seeks to guarantee that all satellites will have the fuel they need to be functional until the next refueling, while concurrently minimizing the cost in fuel that the refueling maneuvers entail. The assignment problem is then solved via auctions, which, by virtue of their distributed nature, can easily and effectively be implemented on a constellation without jeopardizing any robustness properties.
Taking as a given that the P2P assignment problem has been solved, and that it has produced some matching among fuel deficient and fuel sufficient satellites, we then seek to sequence those prescribed maneuvers in the most effective manner. The idea is that while a constellation can be expected to have some redundancy, enough satellites leaving their assigned orbital slots will eventually make it impossible for the constellation to function. To tackle this problem, we define a wide class of operability conditions, and present three algorithms that intelligently schedule the maneuvers. We then briefly show how combining the matching and scheduling problems yields a complete methodology for organizing P2P satellite refueling operations.
|
33 |
Satellite attitude control system based on model-free methodHu, Yangyang. January 2012 (has links)
M. Tech. Electrical Engineering / Deals with nonlinear methods for magnetic attitude control and reaction wheel attitude control. The work is divided into a number of parts. The first part, deals with the satellite attitude control basic information and development of a mathematical model of a low Earth orbit satellite. The second part introduces the controllers used in this dissertation. The third part deals with the dimension between the output of controller and input of reaction wheel. The fourth part solves the problem of the magnetic torque calculation. The last part carries out the simulation tests of those controllers for small satellite and cube satellite.
|
34 |
Attitude control of a CubeSat in an elliptic orbit using nonlinear control.Ajayi, Michael Oluwatosin. January 2011 (has links)
M. Tech. Electrical Engineering / The topic of this dissertation is the attitude control of a CubeSat in an elliptic orbit using nonlinear control. The attitude control system (ACS) is a subsystem of a CubeSat. Its principal goal is to stabilise the orientation of the satellite after launch and during the orbital motion of the satellite. Although several methods have been applied to achieve this objective, this still remains a challenging objective and hence plays an integral role in many modern technologies. CubeSat "Cube Satellite" is a miniaturised satellite which, due to its low cost and application potential is often used by academic institutions for research purposes. However, due to its physical size and weight of 1 kilogram, CubeSat have comparatively limited power supply and computational resources; hence the need for an uncomplicated and reliable control system is critical.
|
35 |
Estudo de manobras evasivas com perturbações orbitais / Study of evasive maneuvers considering orbital perturbationsSousa, Rafael Ribeiro de [UNESP] 28 July 2015 (has links) (PDF)
Made available in DSpace on 2015-12-10T14:22:59Z (GMT). No. of bitstreams: 0
Previous issue date: 2015-07-28. Added 1 bitstream(s) on 2015-12-10T14:29:14Z : No. of bitstreams: 1
000852063.pdf: 2040130 bytes, checksum: 458621c7faa04b8c2ac8a4f58adf2130 (MD5) / Neste trabalho, estudamos o problema da viabilidade de missões espaciais em ambiente de detritos espaciais. Geralmente, um veículo espacial em curso de colisão com um detrito espacial é destruído ou danificado e tem sua missão prejudicada. A preservação destas missões depende da capacidade do satélite de evitar a colisão, como por exemplo, através de uma manobra orbital conhecida como manobra evasiva. Neste estudo, estabelecemos estratégias de manobras evasivas realizadas por um satélite através de um sistema de propulsão, cuja eficiência é medida por parâmetros tecnológicos. Os parâmetros tecnológicos são configurados no planejamento da missão, e descrevem a quantidade de combustível a bordo e a capacidade de expelir propelente do sistema de propulsor. As manobras evasivas foram estudadas para serem aplicadas de tal forma que o satélite escape do detrito espacial sem a evasão da sua órbita nominal de missão, e para este objetivo, incluímos uma propulsão de controle e tratamos o sistema de propulsão como uma perturbação na órbita do satélite. Também foi estabelecido, para realizar manobras evasivas econômicas, uma propulsão que é ligada em uma fração do tempo total disponível para a manobra. Esta fração de tempo é definida como um tempo de pulso de propulsão. As manobras evasivas são estudadas por simulações numéricas da dinâmica de um detrito e um veículo espacial sob a ação da força gravitacional da Terra e de perturbações orbitais oriundas de um sistema de propulsão e da atmosfera da Terra. Nestas simulações calculamos as condições de colisão do detrito e do satélite, que ocorrem ao redor da Terra, e utilizamos para criar catálogos de parâmetros tecnológicos acessíveis ao satélite para escapar destas colisões / We studied the problem of the viability of space missions in debris environment space. Generally, a space vehicle in collision course with a space debris is destroyed or damaged and has impaired their mission. The preservation of these missions depends on the satellite capacity to avoid the collision, for example by an orbital maneuver known as evasive maneuver. In this study, we established strategies evasive maneuvers performed by a satellite via a propulsion system, whose efficiency is measured by technological parameters. Technological parameters are set in the planning of the mission, and describe the amount of fuel on board and the ability to expel propellant propulsion system. The evasive maneuvers were studied to be applied in such a way that the satellite escape the space debris without evasion of its nominal orbit mission, and for this purpose, include a propulsion control and treat the propulsion system as a disturbance in the orbit of satellite. It has also been established, to perform evasive maneuvers driven, propulsion which is connected at a fraction of the total time available for the maneuver. This fraction of time is defined as a propulsion pulse time. The evasive maneuvers are studied by numerical simulations of the dynamics of a debris and a vehicle space under the action of the Earth's gravitational and orbital perturbations arising from a propulsion system and the Earth's atmosphere. In these simulations calculate the debris of the collision conditions and the satellite, which occur around the Earth, and used to create technological parameters catalogs accessible to the satellite to escape these collisions
|
36 |
Laser communications utilizing Molniya satellite orbitsThornton, Russell Lee 01 October 2003 (has links)
No description available.
|
37 |
Time-window optimization for a constellation of earth observation satelliteOberholzer, Christiaan Vermaak 02 1900 (has links)
Thesis (M.Com.(quantitative Management)) / Satellite Scheduling Problems (SSP) are NP-hard and constraint programming and
metaheuristics solution methods yield mixed results. This study investigates a new version of
the SSP, the Satellite Constellation Time-Window Optimization Problem (SCoTWOP),
involving commercial satellite constellations that provide frequent earth coverage.
The SCoTWOP is related to the dual of the Vehicle Routing Problem with Multiple Timewindows,
suggesting binary solution vectors representing an activation of time-windows.
This representation fitted well with the MatLab® Genetic Algorithm and Direct Search
Toolbox subsequently used to experiment with genetic algorithms, tabu search, and simulated
annealing as SCoTWOP solution methods. The genetic algorithm was most successful and in
some instances activated all 250 imaging time-windows, a number that is typical for a
constellation of six satellites. / Quantitative Management
|
38 |
Time-window optimization for a constellation of earth observation satelliteOberholzer, Christiaan Vermaak 02 1900 (has links)
Thesis (M.Com.(quantitative Management)) / Satellite Scheduling Problems (SSP) are NP-hard and constraint programming and
metaheuristics solution methods yield mixed results. This study investigates a new version of
the SSP, the Satellite Constellation Time-Window Optimization Problem (SCoTWOP),
involving commercial satellite constellations that provide frequent earth coverage.
The SCoTWOP is related to the dual of the Vehicle Routing Problem with Multiple Timewindows,
suggesting binary solution vectors representing an activation of time-windows.
This representation fitted well with the MatLab® Genetic Algorithm and Direct Search
Toolbox subsequently used to experiment with genetic algorithms, tabu search, and simulated
annealing as SCoTWOP solution methods. The genetic algorithm was most successful and in
some instances activated all 250 imaging time-windows, a number that is typical for a
constellation of six satellites. / Quantitative Management
|
39 |
Low Earth orbit satellite constellation control using atmospheric dragDu Toit, Daniel N.J. 03 1900 (has links)
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 1997. / This dissertation considers the feasibility of using atmospheric drag to control
constellations of micro-satellites in low Earth orbits. The constellation control
requirements include an acquisition phase and a maintenance phase. Optimal
strategies are designed to control the relative positions of the satellites during these
two phases. It is shown that the feasibility and success of the strategies depend on
many factors, including the satellite properties and orbital configuration. A nominal
test constellation is presented and used as a generic example for the application of the
control strategies.
The dissertation also focuses on the accurate modelling and simulation of a typical
low Earth orbit satellite, moving under the influence of a variety of significant orbit
perturbation forces. The simulations form an integral part of the study and are used to
verify the application of all the proposed control strategies.
|
40 |
Orbital lifetime predictions of Low Earth Orbit satellites and the effect of a DeOrbitSailAfful, Michael Andoh 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital
debris or operational satellites. This risk is especially high within the Low Earth Orbit
(LEO) region where the highest density of space debris is accumulated.
This study investigates orbital decay of some LEO micro-satellites and accelerating orbit
decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite
Toolkit was employed to determine the mean elements and expressions for the time rates
of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used
to evaluate the predicted theory. Results for the test cases indicated that the theory tted
observational data well within acceptable limits.
Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital
parameters derived from historic Two Line Element (TLE) sets and comparing with decay
and lifetime prediction models. The study also explored the deorbit date and time for a
1U CubeSat (ZACUBE-01).
A proposed orbital debris solution or technology known as deorbitsail was also investigated
to gain insight in sail technology to reduce the orbit life of spacecraft with regards to de-
orbiting using aerodynamic drag. The deorbitsail technique signi cantly increases the
e ective cross-sectional area of a satellite, subsequently increasing atmospheric drag and
accelerating orbit decay. The concept proposed in this work introduces a very useful
technique of orbit decay as well as deorbiting of spacecraft. / AFRIKAANSE OPSOMMING: Gedurende sy leeftyd in die ruimte word 'n ruimtetuig blootgestel aan die risiko van 'n
botsing met ruimterommel of met funksionele satelliete. Hierdie risiko is veral hoog in die
lae-aardbaan gebied waar die hoogste digtheid ruimterommel voorkom.
Hierdie studie ondersoek die wentelbaanverval van sommige Lae-aardbaan mikrosatelliete
asook die versnelde baanverval wanneer van 'n deorbitaal meganisme gebruik gemaak word.
Die Semi-Analitiese Liu Teorie en die Satellite Toolkit sagtewarepakket is gebruik om die
gemiddelde baan-elemente en uitdrukkings vir hul tyd-afhanlike tempo van verandering
te bepaal. Toetsgevalle van waargenome vervalde satelliete (Iridium-85 en Starshine-1) is
gebruik om die verloop van die voorspelde teoretiese verval te evalueer. Resultate vir die
toetsgevalle toon dat die teorie binne aanvaarbare perke met die waarnemings ooreenstem.
Die verloop van die SUNSAT mikrosatelliet se wentelbaanverval is ook ontleed deur gebruik
te maak van historiese Tweelyn Elemente datastelle en dit te vergelyk met voorspelde baan-
elemente. Die studie het ook ondersoek ingestel na die voorspelde baan-verbyval van 'n
1-eenheid cubesat (ZACUBE-01).
Die impak op wentelbaanverval deur 'n voorgestelde oplossing vir die beperking van
ruimterommel, 'n deorbitaalseil, is ook ondersoek. So seil verkort 'n satelliet se ruimte-
leeftyd deur sy e ektiewe deursnee-area te vergroot en dan van verhoogde atmosferiese
sleur en sonstralingsdruk gebruik te maak om die vervalproses te versnel. Hierdie voorgestelde
konsep is 'n moontlike nuttige tegniek vir versnelde baanverval en beheerde deorbitalering
van ruimtetuie om ruimterommel te verminder.
|
Page generated in 0.0784 seconds