Spelling suggestions: "subject:"artificiella neural nätverk"" "subject:"artificiel.la neural nätverk""
11 |
Artificiell intelligens - ANN och evolution i shooterspelAkterhall, Joakim January 2012 (has links)
Detta arbete undersöker hur två olika nätverksarkitekturer för artificiella neurala nätverk fungerar i en testmiljö av shooter-karaktär. De två arkitekturer som undersöks är ett feedforward-nätverk samt ett elman-nätverk som tränas med hjälp av evolutionära algoritmer. Skillnaden på de två valda nätverksarkitekturerna är att det sistnämnda har ett korttidsminne. Resultaten visar att det i den testmiljö som använts inte är någon skillnad på de två nätverksarkitekturerna, utan de uppnår i princip samma resultat. Dock så har de beteenden som nätverken uppnått visat på att det är möjligt att använda agenter som är skapade av artificiella neurala nätverk i ett shooter-spel och att de kan generera bra resultat. Något som inte fokuserats på i detta arbete men som skulle vara intressant att kolla vidare på, är till exempel förändring av storleken på nätverken eller att undersöka om ett långtidsminne på det rekurrenta nätverket hade förändrat resultatet.
|
12 |
Styrsystem för fordon med hjälp av artificiella neurala nätverkEngerström, Sigurd January 2007 (has links)
Denna rapport jämför två nätverksarkitekturer för artificiella neurala nätverk vars uppgift är att realisera ett styrsystem för ett fordon som det även skall lära sig att styra. Jämförelsen bygger på utförda experiment där de båda nätverken fick lära sig att styra ett fordon längs en slumpgenererad väg. Båda nätverken bygger på belöningsbaserad inlärning för att lära sig lösa uppgiften. Resultatet av utvärderingen visar både att nätverken inte hade några problem med att lära sig att styra fordonet och att de inte krävde lång tid för att kunna lära sig hur fordonet skulle styras. Resultaten visar inte heller att någon skillnad fanns i vare sig tillförlitlighet eller generaliseringsförmåga hos de båda nätverksarkitekturerna.
|
13 |
Användarverifiering från webbkameraAlajarva, Sami January 2007 (has links)
Arbetet som presenteras i den här rapporten handlar om ansiktsigenkänning från webbkameror med hjälp av principal component analysis samt artificiella neurala nätverk av typen feedforward. Arbetet förbättrar tekniken med hjälp av filterbaserade metoder som bland annat används inom ansiktsdetektering. Dessa filter bygger på att skicka med redundant data av delregioner av ansiktet.
|
14 |
Skillnaden mellan belöningsbaserade och exempelbaserade artificiella neurala nätverk i en 2D-miljö / A comparison of training artificial neural networks with backpropagation and genetic algorithms in a 2D-environmentPressdee Langré, Sean January 2015 (has links)
Detta arbete går ut på att testa hur två olika träningsmetoder påverkar hur ett artificiellt neuralt nätverk (ANN) presterar i en 2d spelmiljö. Ett belöningsbaserat nätverk som använder genetiska algoritmer har jämförts mot ett exempelbaserat nätverk som använder backpropagation. För att göra detta möjligt att testa så behövde fyra delsteg genomföras. Dessa är utveckling av belöningsbaserad ANN, utveckling av exempelbaserad ANN, utveckling av testmiljö och evaluering av resultat. Resultaten visar att agenten belöningsbaserat nätverk har presterat bättre i det flesta testen men även att den varit mer slumpmässig. Det finns dock undantag där den agenten med exempelbaserat nätverk har varit bättre. Slutsatsen är att efter detta experiment rekommenderas en agent med belöningsbaserat nätverk över en med exempelbaserat men att detta inte är någon garanti för att få optimala resultat. Ett framtida arbete som hade varit intressant är att fokusera på endast en algoritm och se hur träning och skillnader på olika nätverksarkitekturer hade påverkat den.
|
15 |
Jämförelse av evolution och samevolution för att evaluera speltillstånd : I artificiella neurala nätverk kombinerat med minimax / Comparison between evolution and coevolution To evaluate game state : In artificial neural networks combined with minimaxTorstensson, Robbin January 2015 (has links)
Detta arbete undersöker två olika tekniker för att evaluera speltillstånd i schack. Teknikerna är samevolution och historiebaserad evolution. De används i kombination med artificiella neurala nätverk och algoritmen minimax. Teknikerna används för att låta två agenter spela schack, genom att välja ut det bästa draget. Kan en agent som bygger på samevolution slå en agent som bygger på historiebaserad evolution? Teknikerna har testats genom att låta agenterna evolveras i 200 generationer var för att sedan låta dem spela mot varandra. Den samevolverade agenten vann tre av 24 matcher, den historiebaserade vann en, och resten slutade i remi. Det tyder på att en samevolverad agent kan slå en historiebaserad, men att de är väldigt lika. Undersökningen tyder på att samevolverade schackagenter har stor risk att hamna i ett lokalt maximum medan historiebaserade gör många bra drag, men saknar strategi för att vinna.
|
16 |
SAMEVOLUTION AV ARTIFICIELLT NEURALT NÄTVERK FÖR ATT EVALUERA SPELTILLSTÅND / COEVOLUTION OF ARTIFICIAL NEURAL NETWORK TO EVALUATE GAMESTATENorberg, David January 2014 (has links)
Detta arbete undersöker två tekniker för att evaluera spelplanen i minimaxalgoritmen. Den tekniken som fokuseras mest på i arbetet är ett artificiellt neuralt nätverk som evolveras med hjälp av samevolution. Tekniken är utformad för att inte behöva någon tidigare mänsklig expertis. Den andra tekniken använder heuristiker och mänsklig expertis för att få fram evalueringsfunktionen. Spelet som används för att testa teknikerna är Kinaschack. Resultaten antyder att tekniken i fokus inte fungerar till spelet Kinaschack. En undersökning där tekniken modifierades så att samevolution byttes ut gav ett bättre resultat. Detta behöver inte betyda att problemet är samevolution Men det tyder på att det är en faktor. Tekniken som arbetet fokuserar på är baserad på ett tidigare arbete där spelet Dam användes. Eftersom tekniken har visats fungera tidigare skulle det vara intressant att testa den med fler spel. I slutet av arbetet diskuteras en variant av tekniken för spelet Schack.
|
17 |
SAMEVOLUTION AV ARTIFICIELLTNEURALT NÄTVERK FÖR ATTEVALUERA SPELTILLSTÅND / COEVOLUTION OF ARTIFICIALNEURAL NETWORD TO EVALUATEGAMESTATENorberg, David January 2014 (has links)
Detta arbete undersöker två tekniker för att evaluera spelplanen i minimaxalgoritmen. Den tekniken som fokuseras mest på i arbetet är ett artificiellt neuralt nätverk som evolveras med hjälp av samevolution. Tekniken är utformad för att inte behöva någon tidigare mänsklig expertis. Den andra tekniken använder heuristiker och mänsklig expertis för att få fram evalueringsfunktionen. Spelet som används för att testa teknikerna är Kinaschack.Resultaten antyder att tekniken i fokus inte fungerar till spelet Kinaschack. En undersökning där tekniken modifierades så att samevolution byttes ut gav ett bättre resultat. Detta behöver inte betyda att problemet är samevolution Men det tyder på att det är en faktor.Tekniken som arbetet fokuserar på är baserad på ett tidigare arbete där spelet Dam användes. Eftersom tekniken har visats fungera tidigare skulle det vara intressant att testa den med fler spel. I slutet av arbetet diskuteras en variant av tekniken för spelet Schack.
|
18 |
Att använda AI för att detektera bröstcancer : En explorativ studie kring användning av bildanalys inom svensk sjukvård / Using AI to detect breast cancer : An explorative study on the usage of image analysis in Swedish healthcareKlingberg, Hanna, Olofsson, Filippa January 2021 (has links)
Breast cancer is the most common form of cancer for women around the world. In an attempt to decrease the mortality, women in Sweden between the ages of 40-74 years are called to regular mammography screenings to detect the disease as early as possible. Despite this, around 1400 die from the disease every year in Sweden. Every mammography image has to be analyzed by two radiologists. Despite this and regular screening, there are cases that go unnoticed. The factors that lessen the effectiveness of the system are that some cases go unnoticed and analyzing the mammography images is time consuming. This paper has investigated whether AI can be used to help solve these issues. Earlier research examines both of these aspects. Algorithms performing at approximately the same level of accuracy as radiologists and lessening the workload for examining radiologists has been developed [1]. This paper examined how to develop a similar simplified algorithm, how it can be implemented in healthcare and what the consequences of that would be. Hopefully, usage of similar technology will lead to a decrease in mortality and more accurate assessments. The study was conducted by interviewing two experts within the subject, and an attempt to develop an algorithm that through image analysis can classify tumours from mammography images. The result shows that there is a big potential for using AI within healthcare, and by that enabling more accurate diagnosis and reducing mortality. During development of the algorithm a deeper understanding of the difficulties was given, such as the need for adequate processing power, processing and organization of image databases and the complexity in developing such a ML-algorithm for image analysis. The developed algorithm performed slightly better than random when detecting breast cancer on mammography images. / Bröstcancer är den vanligaste cancern bland kvinnor i världen. För att minska dödligheten kallas kvinnor i Sverige mellan 40-74 år regelbundet till mammografiscreening, i syfte att upptäcka tumörer i tid. Trots detta avlider ca. 1400 av sjukdomen varje år. Varje mammografibild granskas av två läkare. Trots detta och regelbunden screening finns det fall som missas. De faktorer som gör att systemet inte fungerar optimalt idag är att viss cancer inte upptäcks i tid samt att analysering av mammografibilderna är tidskrävande. Det här arbetet har undersökt huruvida användning av AI kan bidra till att lösa dessa problem. I tidigare forskning undersöks även båda dessa aspekter. Det har utvecklats AI-algoritmer som presterar ungefär i nivå med radiologer samt minskar arbetsbördan för undersökande radiologer [1]. I detta arbete undersöktes hur utvecklandet av en liknande algoritm går till, hur den faktiskt kan implementeras i sjukvården samt vilka konsekvenser detta kan ha. Förhoppningsvis kan tillämpning av liknande teknik leda till minskad dödlighet och säkrare bedömning. Studien genomfördes med intervjuer av två experter inom området, samt försök att utveckla en förenklad algoritm som genom bildanalys kan klassificera tumörer från mammografibilder. Resultatet visade att det finns stor potential för att använda AI inom sjukvården och med hjälp av detta uppnå säkrare bedömning och färre dödsfall. Under utvecklingen av algoritmen gavs en djupare förståelse för de svårigheter som uppkommer i utvecklandet av en sådan algoritm; såsom de krav på tillgänglig processorkraft, behandling och organisering av bilddatabaser och komplexiteten i att utveckla en maskininlärningsalgoritm för bildanalys. Algoritmen som utvecklades presterade något bättre än slumpen i detektion av tumörer på mammografier.
|
19 |
Förutsägelse av en spelares framtida handlingar : En utvärdering av ett Elmmannätverks förmåga att förutspå en spelares framtida handlingar / Predicting a player’s future actions : An evaluation of an Elman network’s ability to predict a player’s future actionsTornell, Christoffer, Jakobsson, Kristoffer January 2022 (has links)
Ett användningsområde för maskininlärning och neurala nätverk är att förutspå data. Exempel på några fält som gynnas av denna teknologi är sjukvård, dataspel, och nätverksprogrammering. Detta arbete utforskar hur noggrant och tidseffektivt en specifik typ av neuralt nätverk kan förutspå en spelares framtida handlingar. Det neurala nätverket ska förutspå en framtida handling genom att ta en historik av data på spelarens inmatningar och spelets tillstånd vid olika tidpunkter. Det använda neurala nätverket kallas för ett Elmannätverk. Ett sekundärt neuralt nätverk vid namn Feed Forward Network används som jämförelsepunkt vid utvärderingen av Elmannätverket. Datainspelningen genomfördes på en avskalad förstapersonsskjutare där data användes för att både träna och utvärdera de neurala nätverken. Resultaten visar hur Elmannätverket presterade sämre än Feed Forward Nätverket. Rapporten tar upp olika möjliga orsaker till detta. Ett möjligt skäl kan vara att en historik av data inte är relevant för förutsägningen. Detta kan utvärderas vidare i framtida arbete.
|
20 |
Neural Network-based Optimization of Solid- and Fluid Mechanical Simulations / Neurala nätverksbaserad optimering av mekaniska simuleringar avfasta och flytande ämnenJeken Rico, Pablo January 2021 (has links)
The following project deals with the optimization of simulation parameters such as the injection location and pitch angle of polyurethane foaming simulations using artificial neural networks. The model's target is to predict quality variables based on the process parameters and the geometry features. Through several evaluations of the model, good parameter combinations can be found which in turn can be used as good initial guesses by high fidelity optimization tools. For handling different mould geometries, a meshing tool has been programmed which transforms variable-sized surface meshes into voxel meshes. Cross-section images of the meshes are then passed together with a series of simulation settings to the neural network which processes the data streams into one set of predictions. The model has been implemented using the TensorFlow interface and trained with a custom generated data set of roughly 10000 samples. The results show well-matching prediction and simulation profiles for the validation cases. The magnitudes of the quality parameters often differ, but the especially relevant areas of optimal injection points are well covered. Good results together with a small model size provide evidence for a feasible and successful extension towards a full 3D application. / Följande projekt handlar om optimering av simuleringsparametrar, såsom injektionsplats och stigningsvinkel för polyuretanskummande simuleringar med hjälp av artificiella neurala nätverk. Modellens mål är att förutsäga kvalitetsvariabler baserat på processparametrarna och geometrifunktionerna. Genom flera utvärderingar av modellen kan man hitta goda parameterkombinationer som i sin tur kan användas som gedigna förutsägelser med högkvalitativa optimeringsverktyg. För hantering av olika geometriska former har ett maskverktyg programmerats som omvandlar ytmaskor med varierande storlek till voxelmaskor. Tvärsnittsbilder av maskor na tillsammans med en serie simuleringsinställningar överförs till det neurala nätverket som behandlar dataströmmarna till en uppsättning förutsägelser. Modellen har implementerats med hjälp av TensorFlow och utbildats med en anpassad genererad datauppsättning på cirka 10000 prover. Resultaten påvisar väl matchande förutsägelser och simuleringsprofiler för valideringsfall. Kvalitetsparametrarnas storlek varierar ofta, men de särskilt relevanta områdena med optimala injektionspunkter är väl täckta. Goda resultat tillsammans med en liten modellstorlek ger bevis för en genomförbar och framgångsrik förlängning mot en fullständig 3D applikation.
|
Page generated in 0.0621 seconds