• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uma an?lise da aplica??o do modelo de Rede Neural RePART em Comit?s de classificadores

Santos, Araken de Medeiros 01 February 2008 (has links)
Made available in DSpace on 2014-12-17T15:47:47Z (GMT). No. of bitstreams: 1 ArakenMS_da_capa_ate_pag_66.pdf: 612002 bytes, checksum: 77ee53e5ec8496b7cf1c4503e222c41d (MD5) Previous issue date: 2008-02-01 / RePART (Reward/Punishment ART) is a neural model that constitutes a variation of the Fuzzy Artmap model. This network was proposed in order to minimize the inherent problems in the Artmap-based model, such as the proliferation of categories and misclassification. RePART makes use of additional mechanisms, such as an instance counting parameter, a reward/punishment process and a variable vigilance parameter. The instance counting parameter, for instance, aims to minimize the misclassification problem, which is a consequence of the sensitivity to the noises, frequently presents in Artmap-based models. On the other hand, the use of the variable vigilance parameter tries to smoouth out the category proliferation problem, which is inherent of Artmap-based models, decreasing the complexity of the net. RePART was originally proposed in order to minimize the aforementioned problems and it was shown to have better performance (higer accuracy and lower complexity) than Artmap-based models. This work proposes an investigation of the performance of the RePART model in classifier ensembles. Different sizes, learning strategies and structures will be used in this investigation. As a result of this investigation, it is aimed to define the main advantages and drawbacks of this model, when used as a component in classifier ensembles. This can provide a broader foundation for the use of RePART in other pattern recognition applications / O RePART (Reward/Punishiment ART), modelo neural que se constitui numa varia??o do modelo Fuzzy Artmap, foi proposto objetivando minimizar problemas inerentes aos modelos da classe Artmap, tais como: prolifera??o de categorias e m? classifica??o. Por essa raz?o, o RePART faz uso de mecanismos adicionais, como: um par?metro contador de inst?ncia, um processo de recompensa/puni??o e um par?metro de vigil?ncia vari?vel. O par?metro contador de inst?ncia busca minimizar o problema de m? classifica??o, resultante da sensibilidade ? ru?dos, freq?entemente presente nos modelos da classe Artmap. O uso da vigil?ncia vari?vel tem como objetivo minimizar o problema de prolifera??o de categorias, diminuindo a complexidade da rede, quando utilizado em aplica??es com um grande n?mero de padr?es de treinamento. A proposta do RePART visou a minimiza??o desses problemas e foi mostrado que o RePART obteve desempenho superior que alguns modelos da classe Artmap. Neste trabalho ? proposta a realiza??o de uma investiga??o do desempenho do modelo RePART em comit?s de classificadores. Nesta investiga??o ser? realizada uma an?lise com comit?s utilizando diferentes tamanhos, estrat?gias de aprendizados e estruturas. Os resultados obtidos com esta investiga??o servir?o como meio de descoberta das vantagens e desvantagens de cada um dos modelos abordados em comit?s. Com isso, poder? ser dado um embasamento ainda mais amplo ? utiliza??o do RePART em outras aplica??es de reconhecimento de padr?es

Page generated in 0.0337 seconds