• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolutionary implications of microsatellite variation in the Peromyscus maniculatus species group

Chirhart, Scott Edward 15 November 2004 (has links)
Given the distribution and probable evolutionary history of the Peromyscus maniculatus species group, an interspecific comparison of microsatellite variation among these species would be logically based (at least initially) on primers isolated from the genome of a geographically central population of P. maniculatus. Additionally, as the species in the group are recently diverged, reasonably informative microsatellite data are likely to require analysis of a rapid evolving category of microsatellite loci. The initial phase of this research involved the isolation, characterization and assessment of variation for a panel of DNA microsatellites containing perfect dinucleotide repeats from a geographically central population of P. maniculatus. Theoretical predictions and empirical studies indicate that phylogenetic analyses based on microsatellite primers isolated from a focal species may be subject to ascertainment biases that can be expected to degrade the efficacy of this approach with increasing phylogenetic depth between the species from which the microsatellites were isolated and those to which these loci are being compared. Results of an analysis of allelic variation at 12 pure, dinucleotide microsatellite loci (isolated from P. maniculatus) are reported for samples of all species in the P. maniculatus species group and the sister taxon P. leucopus. Examined for the species in the P. maniculatus species group for which there is an a priori highly corroborated phylogeny, evidence of ascertainment bias was apparent only for one locus that was unique to P. maniculatus. Genealogical analyses of the data over all loci yielded inferred relationships that were entirely concordant with the a priori corroborated phylogeny for P. maniculatus, P. keeni, P. polionotus, P. melanotis and P. leucopus. Genealogical analyses of the previously unresolved relationships of P. keeni and P. sejugis consistently placed these as an independent sister-group between P. maniculatus and P. polionotus. The geographically improbable sister-group association of P. keeni and P. sejugis may be the result of an historical ancestral continuity or may reflect large-scale lineage sorting rather than true phylogenetic propinquity. These data suggest that, given the choice of an appropriate focal species, even relatively small sets of pure dinucleotide microsatellites can provide reliable population genetic and systematic implications for taxa with divergence times dating to the Pleistocene.
2

Estimating population histories using single-nucleotide polymorphisms sampled throughout genomes

McTavish, Emily Jane Bell 05 November 2013 (has links)
Genomic data facilitate opportunities to track complex population histories of divergence and gene flow. We used 47,506 single-nucleotide polymorphisms (SNPs) to investigate cattle population history. Cattle are descendants of two independently domesticated lineages, taurine and indicine, that diverged 200,000 or more years ago. We found that New World cattle breeds, as well as many related breeds of cattle in southern Europe, exhibit ancestry from both the taurine and indicine lineages. Although European cattle are largely descended from the taurine lineage, gene flow from African cattle (partially of indicine origin) contributed substantial genomic components to both southern European cattle breeds and their New World descendants. We extended these analyses to compare timing of admixture in several breeds of taurine-indicine hybrid origin. We developed a metric, scaled block size (SBS), that uses the unrecombined block size of introgressed regions of chromosomes to differentiate between recent and ancient admixture. By comparing test individuals to standards with known recent hybrid ancestry, we were able to differentiate individuals of recent hybrid origin from other admixed individuals using the SBS metric. We genotyped SNP loci using the bovine 50K SNP panel. The selection of sites to include in SNP analyses can influence inferences from the data, especially when particular populations are used to select the array of polymorphic sites. To test the impact of this bias on the inference of population genetic parameters, we used empirical and simulated data representing the three major continental groups of cattle: European, African, and Indian. We compared the inference of population histories for simulated data sets across different ascertainment conditions using F[subscript ST] and principal components analysis (PCA). Ascertainment bias that results in an over-representation of within-group polymorphism decreases estimates of F[subscript ST] between groups. Geographically biased selection of polymorphic SNPs changes the weighting of principal component axes and can bias inferences about proportions of admixture and population histories using PCA. By combining empirical and simulated data, we were able to both test methods for inferring population histories from genomic SNP data and apply these methods to practical problems. / text
3

An integrative network approach for the study of human disease

Dickerson, Jonathan January 2010 (has links)
Research into human disease has classically been 'bottom-up', focussing on individual genes. However, the emergence of Systems Biology has prompted a more holistic 'top-down' approach to decoding life. Less than a decade since the complete draft of the human genome was published, we are increasingly in a position to model the interacting constituents of a cell and thus understand molecular perturbations. Given biological systems are rarely attributable to individual molecules and linear pathways, we must understand the complex dynamic interplay as cellular components interact, combine, overlap and conflict. The integrative approach afforded by Network Biology provides us with a powerful toolset to understand the vast volumes of omics data. In this thesis, I investigate both infectious disease, specifically HIV infection and heritable disease. HIV, the causative agent of AIDS, represents an extensive perturbation of the host system and results in hijacking of cellular proteins to replicate. I first introduce the HIV-interaction data and then characterise HIV's hijack, revealing the ways Network Biology can greatly enhance our understanding of host-pathogen systems and ultimately the systems itself. I find a significantly greater propensity for HIV to interact with ''key'' host proteins that are highly connected and represent critical cellular functions. Unexpectedly, however, I find there are no associations between HIV interaction and inferred essentiality and genetic disease-association. I hypothesise that these observations could be the result of ancestral selection pressure on retroviruses to minimise interactions with phenotypically crucial proteins. Investigating inherited disease, I apply a similar integrative approach to determine the relationships between inherited disease, evolution and function. I find that 'disease' genes are not a homogenous group, and that their emergence has been ongoing throughout the evolution of life; contradicting previous studies. Finally, I consider the consequence of bias in literature-curated interaction datasets. I develop a novel method to identify and correct for ascertainment bias and demonstrate that failure to do this weakens conclusions. correct for ascertainment bias and demonstrate that failure to do this weakens conclusions. The aim of this thesis has been to explore the ways Network Biology can provide an integrative biological approach to studying infectious and inherited disease. Given billions of people around the world are susceptible to disease, it is ultimately hoped that a Systems Biology approach to understanding disease will herald new pharmaceutical interventions.
4

Quantifying Ascertainment Bias and Determining Proxy Ancestral Alleles in Human Genome-Wide Polymorphic Data for Use in the Determination of Human Demographic History

Croteau-Chonka, Damien January 2007 (has links)
Thesis advisor: Gabor T. Marth / Thesis advisor: Eric F. Tsung / My work is part of an effort in Dr. Gabor Marth's population genetics lab to extend the work of Marth's 2004 Genetics paper "The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations" by applying its methods to new datasets. My contribution toward this end has been to create computer code (in Perl and Bash) to quantify ascertainment bias and determine proxy ancestral alleles in human genome-wide polymorphic data for post-doctoral fellow Dr. Eric Tsung's use in the determination of human demographic history. The final results of my efforts will be part of a poster by Dr. Tsung (with myself as a second author) displayed at the 2007 Biology of Genomes Symposium at Cold Spring Harbor Laboratory in Cold Spring Harbor, New York. Our goal is to turn that poster into a paper (on which I will be an author) for submission for publication in a major scientific research periodical and which will also be available in the future at http://bioinformatics.bc.edu/marthlab/ascertainmentancestral/. / Thesis (BS) — Boston College, 2007. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Biology. / Discipline: College Honors Program.
5

The evolution of nuclear microsatellite DNA markers and their flanking regions using reciprocal comparisons within the African mole-rats (Rodentia: Bathyergidae)

Ingram, Colleen Marie 30 October 2006 (has links)
Microsatellites are repetitive DNA characterized by tandem repeats of short motifs (2 – 5 bp). High mutation rates make them ideal for population level studies. Microsatellite allele genesis is generally attributed to strand slippage, and it is assumed that alleles are caused only by changes in repeat number. Most analyses are limited to alleles (electromorphs) scored by mobility only, and models of evolution rarely account for homoplasy in allele length. Additionally, insertion/deletion events (indels) in the flanking region or interruptions in the repeat can obfuscate the accuracy of genotyping. Many investigators use microsatellites, designed for a focal species, to screen for genetic variation in non-focal species. Comparative studies have shown different mutation rates of microsatellites in different species, and even individuals. Recent studies have used reciprocal comparisons to assess the level of polymorphism of microsatellites between pairs of taxa. In this study, I investigated the evolution of microsatellites within a phylogenetic context, using comparisons within the rodent family Bathyergidae. Bathyergidae represents a monophyletic group endemic to sub-Saharan Africa and relationships are well supported by morphological and molecular data. Using mitochondrial and nuclear DNA, a robust phylogeny was generated for the Bathyergidae. From my results, I proposed the new genus, Coetomys. I designed species-specific genotyping and microsatellite flanking sequence (MFS) primers for each genus. Sequencing of the MFS provided direct evidence of the evolutionary dynamics of the repeat motifs and their flanking sequence, including rampant electromorphic homoplasy, null alleles, and indels. This adds to the growing body of evidence regarding problems with genotype scores from fragment analysis. A number of the loci isolated were linked with repetitive elements (LTRs and SINEs), characterized as robust phylogenetic characters. Results suggest that cryptic variation in microsatellite loci are not trivial and should be assessed in all studies. The phylogenetic utility of the nucleotide variation of the MFS was compared to the well-resolved relationships of this family based on the 12S/TTR phylogeny. Variation observed in MFS generated robust phylogenies, congruent with results from 12S/TTR. Finally, a number of the indels within the MFS provided a suite of suitable phylogenetic characters.
6

An investigation of genetic and reproductive differences between Faroe Plateau and Faroe Bank cod (Gadus morhua L.)

Petersen, Petra Elisabeth January 2014 (has links)
The Atlantic cod (Gadus morhua L.) fishery is of great economic importance to the Faroese economy. There are two separately managed cod stocks around the Faroe Islands, the Faroe Plateau and the Faroe Bank cod. Both have experienced dramatic decreases in size and informed management decisions are vital for both stock viability and exploitation. The stocks are geographically isolated by an 800 m deep channel and water temperatures are on average 1 – 2 ºC higher on the Faroe Bank than on the Faroe Plateau. There are clear phenotypic differences between the stocks; in particular, the markedly higher growth rate for the Faroe Bank cod has caught public and scientific attention. There is continuing debate regarding the relative importance of genetics and environmental contributions to the contrasting phenotypes. Analyses of reproductive parameters (field data and experimental captive spawnings) as well as analyses of microsatellite and single nucleotide polymorphism (SNP) markers were undertaken to better resolve the issue. Field data as well as data from experimental captive spawnings provided evidence of reproductive differences between Faroe Plateau and Faroe Bank cod. Peak spawning occurred earlier on the Faroe Plateau than on the Faroe Bank and this difference in timing of spawning was maintained in captivity. In particular, differences in sizes of eggs (average diameters of 1.40 and 1.30 mm for Faroe Plateau and Faroe Bank cod eggs, respectively) and indirect evidence of greater volumes spawned by the Faroe Bank females suggested stock differences with respect to egg size – egg number trade-off. It was hypothesised that the strategy adopted by cod on the Faroe Bank, with a higher number of smaller eggs, evolved in response to a more hostile environment (bare seabed and higher exposure to predators) experienced by early life stages in this area. Experimental captive spawnings with Faroe Bank cod showed a large interfamily skew in survival rates of cod eggs and fry. Egg size was identified as a useful indicator of survival rates in the egg stage, but egg survival rates could not be used to predict viability in later developmental stages, thus highlighting the importance of employing some sort of genetic monitoring of cod fry to ensure sufficient family representation in the progeny. While no tank effect was evident concerning fry survival, a significant tank effect was identified concerning body sizes of fry. Microsatellite data were analysed using large sample sizes of Faroe Plateau and Faroe Bank cod with the Faroe Plateau divided into two locations, Faroe Plateau North-East and Faroe Plateau West (cod from each of the two were known to belong to separate spawning grounds). Two Norwegian coastal cod samples were included as outlier populations. While no genetic differentiation was detected between the two Faroe Plateau locations, these analyses revealed a detectable, albeit relatively modest, degree of genetic differentiation between cod from the Faroe Plateau and the Faroe Bank (FST = 0.0014 and 0.0018; DJost_EST = 0.0027 and 0.0048; P < 0.0001 and P < 0.001 for the Faroe Plateau North-East – Faroe Bank and the Faroe Plateau West – Faroe Bank comparisons). These values were several times smaller than those between Faroese and Norwegian coastal cod (pairwise FST and DJost_EST values in the range of 0.0061 – 0.0137 and 0.0158 – 0.0386, respectively). Despite recent reductions in census population sizes for Faroe Plateau and, particularly, Faroe Bank cod, genetic diversity estimates were comparable to the ones observed for Norwegian coastal cod and there was no evidence of significant genetic bottlenecks. Lastly, data for one of the markers (Gmo132) indicated genotype-dependent vertical distribution of cod (as investigated for Faroe Plateau North-East cod). Contrary to some previously published studies, analysis of SNPs of two candidate genes for adaptive divergence, the hemoglobin gene Hb-ß1 and the transferrin gene Tf1, failed to detect differentiation between samples of Faroe Plateau and Faroe Bank cod analysed in this thesis. Of 3533 novel SNPs simultaneously discovered and genotyped by restriction-site associated DNA (RAD) sequencing, 58 showed evidence of genetic differentiation between Faroe Plateau North-East and Faroe Bank cod (P < 0.05). No single locus was fixed for different alleles between Faroe Plateau and Faroe Bank cod. A set of eight informative SNPs (FST values between Faroe Plateau and Faroe Bank samples > 0.25; P < 0.0005) were selected for validation in larger samples, that included cod from both Faroe Plateau areas and the Faroe Bank as well as Norwegian coastal and White Sea cod. Six out of the eight loci amplified successfully with a PCR-based method and there was 100 % concordance between genotypes of individuals screened by both techniques. Due to ascertainment bias, the SNPs should only be applied with caution in a broader geographical context. Nonetheless, these SNPs did confirm the genetic substructure suggested for Faroese cod by microsatellite analyses. While no genetic differentiation was evident between the two Faroe Plateau locations, significant genetic differentiation was evident between Faroe Plateau and Faroe Bank cod at five of the SNPs (FST values in the range of 0.0383 – 0.1914). This panel of five SNPs could confidently be used to trace groups of Faroe Plateau and Faroe Bank cod to their population of origin. In conclusion, multiple lines of evidence demonstrate that Faroe Plateau and Faroe Bank cod are truly two genetically distinct populations. While the findings contribute to a broader understanding of the biology and the genetics of Faroe Plateau and Faroe Bank cod, the novel SNPs developed may provide a valuable resource for potential future demands of i.e. genetic stock identification methods.

Page generated in 0.0643 seconds