Spelling suggestions: "subject:"asphalt concrete"" "subject:"asphalt aconcrete""
61 |
An evaluation of the Georgia and Marshall methods of bituminous mix designs: sensitivity to changes in aggregate grading and asphalt contentStapler, William Thomas 08 1900 (has links)
No description available.
|
62 |
Dynamic modulus test laboratory investigation and future implementation in the State of Washington /Elangovan, Muthukumaran Anbilpadugai, January 2008 (has links) (PDF)
Thesis (M.S. in civil engineering)--Washington State University, August 2008. / Includes bibliographical references (p. 106-109).
|
63 |
Quantifying anistropy in asphalt concrete pavements using an ultrasonic methodJurado, Monica C., January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
64 |
Finite element modeling of nondestructive test methods used for detection of delamination in hot mix asphalt pavementsMuñoz, Dante Mejia. January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
65 |
Optical gradation for crushed limestone aggregatesCheng, Ken, January 2000 (has links)
Thesis (Ph. D.)--West Virginia University, 2000. / Title from document title page. Document formatted into pages; contains x, 179 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 149-153).
|
66 |
Cement stabilization of aggregate base materials blended with reclaimed asphalt pavement /Brown, Ashley Vannoy, January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Civil and Environmental Engineering, 2006. / Includes bibliographical references (p. 39-40).
|
67 |
Effects of reclaimed asphalt pavement on mechanical properties of base materials /Cooley, Dane A., January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Civil and Environmental Engineering, 2005. / Includes bibliographical references (p. 61-63).
|
68 |
Defect characterization in heterogeneous civil materials using ultrasoundIn, Chi-Won 17 January 2013 (has links)
Asphalt and Portland cement concrete constitutes a significant portion of the total infrastructure all over the world. It has been reported that much of this concrete infrastructure is now approaching or has already passed its original design life. Thus it is critical to be able to quantitatively assess the condition of these concrete components. In order to rehabilitate or repair the civil infrastructure, nondestructive evaluation (NDE) techniques have been of great interest for infrastructure management agencies. However concrete components present several specific NDE challenges that must be addressed. . Concrete naturally exhibits large scale heterogeneous microstructure with a great deal of local material property variability, For this reasons, many conventional NDE techniques that work well for steel and other homogeneous materials cannot be applied to concrete; concrete is unable to transmit high frequencies, as the heterogeneity of the concrete causes signals of smaller wavelengths or wavelengths equal to the nominal aggregate size to be scattered and severely attenuated. Nevertheless, progress has been made towards accurate and reliable in-place NDE of concrete structures and materials, for example impact echo, ultrasonic pulse velocity method, and the ultrasonic wave transmission method. However, the detection of smaller sized defects or remote defects that are located away from the testing location still pose problems. In addition, the large size and potential limited access conditions of civil structures raise additional challenges. To overcome the limitations of current NDE techniques for concrete, this research considers two different types of ultrasonic waves (coherent and incoherent wave) to quantitatively characterize and monitor defects in heterogeneous concrete materials. The global objective of this research is to determine the feasibility and applicability of using these ultrasonic waves as a global, rapid, reliable, and non-biased technique for the routine screening of defects or monitoring of concrete structures and materials. Three different problems are considered: 1) characterization of segregation in asphaltic concrete, 2) crack depth determination in pier cap of concrete bridge structure, and 3) monitoring of self-healing process in cement-based concrete.
|
69 |
Techniques and procedures for bonded concrete overlaysTrevino Frias, Manuel 16 June 2011 (has links)
Not available / text
|
70 |
Development of the simplified method to evaluate dynamic mechanical analysis data on asphalt-aggregate mixturesAb-Wahab, Yunus Bin 16 February 1993 (has links)
Testing of asphalt binders and asphalt-aggregate mixtures using dynamic
mechanical analysis is becoming popular with improvements in high-speed
computers, precision equipment, and computer software. Researchers are trying
to describe the behavior of asphalt binders and asphalt-aggregate mixtures in
terms of their time- and temperature-dependent linear viscoelastic behavior.
The objectives of this thesis were to develop a simplified pneumatic test to
perform dynamic mechanical analysis (DMA), to evaluate the performance of the
pneumatic and hydraulic test systems using the computer software developed to
perform DMA tests, and, to develop a simplified method to evaluate the
experimental data obtained from DMA tests on aged asphalt-aggregate mixtures.
A simplified pneumatic test system was developed to perform DMA.
Computer software was also developed to perform DMA testing on both the
simplified pneumatic and hydraulic test systems. DMA was performed on both
test systems to compare their performance, and on aged asphalt-aggregate
mixtures to evaluate the application of the simplified method.
The results from the pneumatic and hydraulic test systems show that there
is about a 20 percent difference in the complex modulus, especially at high loading
frequencies. This is due to the compressibility of the air used in the pneumatic
test system. The compressibility of air is greater at warmer temperatures than at
cooler temperatures. Therefore, the application of the pneumatic test system to
perform dynamic testing should be limited to low frequencies ( < 2 Hz), low
temperatures ( < 25°C), and low load ( < 454 kg (1000 lbs.)) applications unless
a modification can be made to increase the pneumatic cylinder's response time to
match the hydraulic cylinder's response time.
The simplified analysis method developed in this thesis divides the DMA
results into four complex modulus and five phase angle parameters. These
parameters describe the shapes of the master stiffness and phase angle curves and
distinguished between the different asphalt-aggregate mixtures and the aging
methods performed on the aged asphalt-aggregate mixtures. The phase angle
parameters were reduced into two variables, peak frequency and peak angle,
which vary with the aging of each asphalt-aggregate mixture. The peak frequency
and peak angle decrease as the aging severity increases and the change of peak
frequency and peak angle vary with the asphalt-aggregate mixture and aging
treatment. Therefore, the complex modulus parameters and peak frequency and
peak angle may be good indicators to describe how a master curve's shape varies
with asphalt, aggregate, and aging type. / Graduation date: 1993
|
Page generated in 0.038 seconds