Spelling suggestions: "subject:"assembleias neurais"" "subject:"assembléias neurais""
1 |
Contribui??es para o estudo do c?digo neuralSantos, Vitor Lopes dos 25 February 2015 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-02-17T22:41:57Z
No. of bitstreams: 1
VitorLopesDosSantos_TESE.pdf: 14542830 bytes, checksum: 6152cf87bb56d50e13c1279c3841c19e (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-02-19T22:43:00Z (GMT) No. of bitstreams: 1
VitorLopesDosSantos_TESE.pdf: 14542830 bytes, checksum: 6152cf87bb56d50e13c1279c3841c19e (MD5) / Made available in DSpace on 2016-02-19T22:43:00Z (GMT). No. of bitstreams: 1
VitorLopesDosSantos_TESE.pdf: 14542830 bytes, checksum: 6152cf87bb56d50e13c1279c3841c19e (MD5)
Previous issue date: 2015-02-25 / Os recentes avan?os t?cnicos das duas ?ltimas d?cadas para o registro de sinais
neuroeletrofisiol?gicos foram essenciais para que se testassem hip?teses h? muito propostas
acerca de como c?lulas nervosas processam e armazenam informa??o. No entanto, ao
permitir maior detalhamento dos dados coletados, as novas tecnologias levam
inevitavelmente ao aumento de sua complexidade estat?stica e, consequentemente, ?
necessidade de novas ferramentas matem?tico-computacionais para sua an?lise.
Nesta tese, apresentamos novos m?todos para a an?lise de dois componentes
fundamentais nas atuais teorias da codifica??o neural: (1) assembleias celulares, definidas
pela co-ativa??o de subgrupos neuronais; e (2) o padr?o temporal de atividade de neur?nios
individuais. Em rela??o a (1), desenvolvemos um m?todo baseado em an?lise de
componentes independentes para identificar e rastrear padr?es de co-ativa??o significativos
com alta resolu??o temporal. Superamos limita??es de m?todos anteriores, ao efetivamente
isolar assembleias e abrir a possibilidade de analisar simultaneamente grandes popula??es
neuronais. Em rela??o a (2), apresentamos uma nova t?cnica para a extra??o de padr?es de
atividade em trens de disparo baseada na decomposi??o wavelet. Demonstramos, por meio
de simula??es e de aplica??o a dados reais, que nossa ferramenta supera as mais utilizadas
atualmente para decodificar respostas de neur?nios e estimar a informa??o de Shannon entre
trens de disparos e est?mulos externos.
|
2 |
Excitação de redes neurais pulsadas em tempo real: sistema conversor/codificador em FPGA e amostradoresOLIVEIRA NETO, José Rodrigues de 28 July 2015 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-04-26T17:47:29Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
DISSERTACAO Jose Rodrigues de Oliveira Neto.pdf: 16621430 bytes, checksum: fb1803a2a724e072379eae9f12089387 (MD5) / Made available in DSpace on 2016-04-26T17:47:29Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
DISSERTACAO Jose Rodrigues de Oliveira Neto.pdf: 16621430 bytes, checksum: fb1803a2a724e072379eae9f12089387 (MD5)
Previous issue date: 2015-07-28 / CNPQ / O presente trabalho descreve a investigação e desenvolvimento de soluções para excitação Redes
Neurais Pulsadas de tempo real a partir de grandezas físicas transduzidas e sinais simulados. Para
isso foi desenvolvido um hardware dedicado de baixo custo capaz de transformar dados em trens
de spikes, que são processados por essas redes. O sistema visa converter sinais digitais em spikes
de neurônios artificiais, que são pulsos de 1 ms de duração. O sistema ainda pode organizar neurônios
que disparam conjuntamente, a fim de gerar os três códigos neurais mais importantes descritos
na literatura da neurociência: codificação por taxa de disparos, codificação por populações e codificação
temporal. São descritas ainda duas topologias de amostradores (samplers) que discretizam
representações na forma de populações neurais, que devem ser processadas segundo a abordagem
Computação por Assembleias Neurais. Uma das topologias recolhe amostras na forma de populações
de neurônios ativos durante um período definido (codificação por população), enquanto a outra
recolhe amostras baseada na diferença temporal entre spikes (codificação temporal). Os sinais resultantes
da amostragem podem ser utilizados internamente na rede como representações discretas de
informações. Os sinais amostrados podem ainda ser utilizados como entradas de circuitos de tomada
de decisão, cuja descrição das características e simulações também é parte deste trabalho. / This work describes the research and development of solutions for excitement of real-time Spiking
Neural Networks from transduced physical quantities and simulated signals. For this it developed
a dedicated low cost hardware able to turn data into spike trains, which are processed by these
networks. The systemaims to convert digital signals into spikes of artificial neurons, which are pulses
of 1 ms. The system can even arrange neurons that fire together to generate the three most important
neural codes described in the neuroscience literature: rate coding, populations coding and temporal
coding. Two topologies of samplers are described; these topologies discretize representations in the
form of neural populations that should be processed according to Neural Assembly Computing approach.
One of these topologies collects samples as populations of neurons active during a defined
period (population coding), while the other topology collects samples based on the time difference
between spikes (temporal coding). The signals resulting from the sample can be used internally in the
network as discrete representations of information. The sampled signals may also be used as inputs
of decision-making circuits, the description of the characteristics and simulation of these circuits is
also part of this work.
|
3 |
Contribui??es para a an?lise de sinais neuronais e biom?dicosSantos, V?tor Lopes dos 03 March 2011 (has links)
Made available in DSpace on 2014-12-17T14:55:49Z (GMT). No. of bitstreams: 1
VitorLS_DISSERT.pdf: 1833534 bytes, checksum: 72ebc7d9d8be6ba8ae53eaad106afa8d (MD5)
Previous issue date: 2011-03-03 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Following the new tendency of interdisciplinarity of modern science, a new field
called neuroengineering has come to light in the last decades. After 2000, scientific
journals and conferences all around the world have been created on this theme. The
present work comprises three different subareas related to neuroengineering and
electrical engineering: neural stimulation; theoretical and computational neuroscience;
and neuronal signal processing; as well as biomedical engineering.
The research can be divided in three parts: (i) A new method of neuronal
photostimulation was developed based on the use of caged compounds. Using the
inhibitory neurotransmitter GABA caged by a ruthenium complex it was possible to
block neuronal population activity using a laser pulse. The obtained results were
evaluated by Wavelet analysis and tested by non-parametric statistics. (ii) A
mathematical method was created to identify neuronal assemblies. Neuronal assemblies
were proposed as the basis of learning by Donald Hebb remain the most accepted theory
for neuronal representation of external stimuli. Using the Marcenko-Pastur law of
eigenvalue distribution it was possible to detect neuronal assemblies and to compute
their activity with high temporal resolution. The application of the method in real
electrophysiological data revealed that neurons from the neocortex and hippocampus
can be part of the same assembly, and that neurons can participate in multiple
assemblies. (iii) A new method of automatic classification of heart beats was developed,
which does not rely on a data base for training and is not specialized in specific
pathologies. The method is based on Wavelet decomposition and normality measures
of random variables.
Throughout, the results presented in the three fields of knowledge represent
qualification in neural and biomedical engineering / Following the new tendency of interdisciplinarity of modern science, a new field
called neuroengineering has come to light in the last decades. After 2000, scientific
journals and conferences all around the world have been created on this theme. The
present work comprises three different subareas related to neuroengineering and
electrical engineering: neural stimulation; theoretical and computational neuroscience;
and neuronal signal processing; as well as biomedical engineering.
The research can be divided in three parts: (i) A new method of neuronal
photostimulation was developed based on the use of caged compounds. Using the
inhibitory neurotransmitter GABA caged by a ruthenium complex it was possible to
block neuronal population activity using a laser pulse. The obtained results were
evaluated by Wavelet analysis and tested by non-parametric statistics. (ii) A
mathematical method was created to identify neuronal assemblies. Neuronal assemblies
were proposed as the basis of learning by Donald Hebb remain the most accepted theory
for neuronal representation of external stimuli. Using the Marcenko-Pastur law of
eigenvalue distribution it was possible to detect neuronal assemblies and to compute
their activity with high temporal resolution. The application of the method in real
electrophysiological data revealed that neurons from the neocortex and hippocampus
can be part of the same assembly, and that neurons can participate in multiple
assemblies. (iii) A new method of automatic classification of heart beats was developed,
which does not rely on a data base for training and is not specialized in specific
pathologies. The method is based on Wavelet decomposition and normality measures
of random variables.
Throughout, the results presented in the three fields of knowledge represent
qualification in neural and biomedical engineering
|
Page generated in 0.0471 seconds