Spelling suggestions: "subject:"assembly shop"" "subject:"assembly hop""
1 |
Lot Streaming in Two-Stage Flow Shops and Assembly SystemsMukherjee, Niloy Jeet 09 October 2014 (has links)
The research work presented in this dissertation relates to lot streaming in two-stage flow shops and assembly shops. Lot streaming refers to the process of splitting a production lot into sublots, and then, processing the sublots on different machines simultaneously in an overlapping manner. Such a strategy allows finished material at each stage to be transferred downstream sooner than if production and transfer batches were restricted to be the same size. In the case when each sublot consists of just one item, a single-piece-flow is obtained. Such a continuous flow is a key element of the Toyota Production System. However, single-piece-flow increases the number of transfers and the total transportation cost (time). As a result, it may not be economically justifiable in many cases, and therefore, material may have to be transferred in batches (called transfer batches, or sublots). Lot streaming addresses the problems of determining optimal sublot sizes for use in various machine environments and optimizes different performance measures.Given this relationship between lot streaming and the Toyota Production System, lot streaming can be considered a generalization of lean principles.
In this dissertation, we first provide a comprehensive review of the existing literature related to lot streaming. We show that two-stage flow shop problems have been studied more frequently than other machine environments. In particular, single-lot two-machine flow shops have been very well researched and efficient solution techniques have been discovered for a large variety of problems.
While two-stage flow shop lot streaming problems have been studied extensively, we find that the existing literature assumes that production rates at each stage remain constant. Such an assumption is not valid when processing rates change, for example, due to learning. Learning here, refers to the improvements in processing rates achieved due to experience gained from processing units. We consider the case when the phenomenon of learning affects processing and setup times in a two-stage flow shop processing a single lot, and when, sublot-attached setup times exist. The decrease in unit-processing time, or sublot-attached setup time, is given by Wright's learning curve. We find closed-form expressions or simple search techniques to obtain optimal sublot sizes that minimize the makespan when the effect of learning reduces processing times, sublot-attached setup times, or, both. Then, we provide a general method to transform a large family of scheduling problems related to lot streaming in the presence of learning, to their equivalent counterparts that are not influenced by learning. This transformation is valid for all integrable learning functions (including the Wright's learning curve). As a result, a large variety of new problems involving learning can be solved using existing solution techniques.
We then consider lot streaming in stochastic environments in the context of sourcing material. Such problems have been well studied in the literature related to lot streaming for cost-based objective functions when demand is continuous, and when processing times are deterministic, or, for material sourcing problems when the time required to procure a lot is stochastic but is independent of the lot size. We extend this study to the case when the time required to produce a given quantity of products is stochastic and dependent on the number of units produced. We consider the case when two sublots are used, and also compare the performance of lot streaming to the case when each sublot is sourced from an independent supplier.
Next, we address a new problem related to lot streaming in a two-stage assembly shop, where we minimize a weighted sum of material handling costs and makespan. We consider the case when several suppliers provide material to a single manufacturer, who then assembles units from different suppliers into a single item. We assume deterministic, but not necessarily constant, lead times for each supplier, who may use lot streaming to provide material to the manufacturer. Lead times are defined as the length of the time interval between a supplier beginning to process material and the time when the first sublot is delivered to the manufacturer; Subsequent sublots must be transported early enough so that the manufacturer is not starved of material. The supplier may reduce this lead time by using lot streaming, but at an increased material handling cost. The decrease in lead time is also affected by other factors such as lot attached/detached setup times, transportation times etc. We allow these factors to be different for each supplier, and each lot processed by the same supplier. We refer to this problem as the Assembly Lot Streaming Problem (ALSP). We show that the ALSP can be solved using two steps. The first step consists of solution to several two-stage, single-lot, flow shop, makespan minimization problems. The solution to these problems generate prospective sublot sizes. Solution methods outlined in the existing literature can be used to complete this step. The second step obtains optimal number of sublots and production sequence. For a given production sequence, this step can be executed in polynomial-time; otherwise, the second step problem is NP-hard and integer programming formulations and decomposition-based methodologies are investigated for their solution. We make very limited assumptions regarding the handling cost and the relationship between the supplier lead time and number of sublots used. As a result, our solution methodology has a wide scope. / Ph. D.
|
2 |
Prozesskettensimulation als zukünftiger Standard der numerischen BerechnungBauer, Alexander, Robertson, Jeff 20 June 2024 (has links)
Steigende Anforderungen an die Genauigkeit und Aussagekraft numerischer
Berechnungen sowie neue Werkstoffe und Prozesse erfordern zunehmend technologische
Erweiterungen und Entwicklungen innerhalb der Softwarelösungen. Neben der
Ausweitung von Möglichkeiten in der Material- und Prozessmodellierung sowie der
genaueren Abbildung physikalischer Prozesse, stehen dabei zunehmend Prozessketten
im Fokus. Die Historie, welche Halbzeuge oder Bauteile bereits vom Urformprozess an mit
sich führen, bestimmt dabei zu einem erheblichen Grad die Eigenschaften und damit auch
mögliche Verfahrensgrenzen in allen nachfolgenden Prozessstufen. Dadurch wird deutlich,
dass eine Betrachtung ebendieser vorangegangenen Schritte einen deutlichen Einfluss
auf das Bauteilverhalten in den Folgeprozessen hat, wodurch die Aussagekraft
entkoppelter Simulationen ab einem bestimmten Detailgrad dahingehend begrenzt bleibt.
Der damit steigenden Komplexität von Berechnungsproblemen stehen auf der anderen
Seite Forderungen einer immer leichter und intuitiver werdenden Bedienung von
Simulationssoftware entgegen.
Hexagons Smart Shop Softwarelösungen nehmen dabei das Problem der Prozessketten-
simulation von der Umformung bis zur Assemblierung in den Fokus. Neben der
Berechnung und Evaluierung von komplexen metallischen Baugruppen sowie der
nahtlosen Integration physischer Messtechnik, spielt dabei die Bedienbarkeit eine
bedeutende Rolle. Das Ziel ist mögliche Probleme in der Produktentwicklung zeitnah zu
detektieren und zu adressieren, um physische Prototypen auf ein Minimum reduzieren zu
können (Abbildung 1). Am Beispiel eines Karosseriebauteils erfolgt innerhalb des Beitrags
die Darstellung eines Workflows zur Detektion möglicher Fertigungsprobleme in der
Produktentwicklungsphase sowie die Beleuchtung weiterer Anwendungsfälle. / Increasing demands towards the accuracy and significance of numerical simulations as
well as new materials and processes require technological enhancements and
developments within the software solutions. Beyond extending possibilities for material-
and process modeling as well as more accurate prediction of physical behavior, process
chains get into the spotlight more and more. The history which parts already inherit as
from the casting stage on determines the attributes and therefore also possible process
limits in all following production stages. This illustrates that the analysis of this preceding
process steps has a significant impact on the part behavior in all subsequent steps, which
is why the meaningfulness of decoupled simulations is limited at a certain demand for
detail. The increasing complexity of the simulation problems on one hand are facing
demands for higher user friendliness and more intuitive control of the simulation software
on the other hand.
Hexagons Smart Shop software solutions have their focus on the process chain simulation
from forming to assembly. Beyond the calculation and evaluation of complex metallic
assemblies and the seamless integration of metrology devices, usability plays a major role.
The aim hereby is to detect and address possible issue within the product development as
early as possible and therefore reduce physical prototypes to a minimum. With the
example of a body in white part, it is shown how a workflow for the detection of possible
manufacturing challenges within the product development as well as other alternative use
cases can look like.
|
3 |
Proposta de um modelo de simulação computacional para a programação de operações em sistemas assembly shop. / A computer simulation model for scheduling operations in assembly shop systems.Pereira, Mário Tonizza 14 April 2009 (has links)
Esta dissertação estuda o problema da programação de operações em sistemas job shop de manufatura onde itens com estruturas de materiais são produzidos a partir de componentes fabricados e montados. Tais sistemas são denominados assembly shops. O caso geral do problema de programação de operações em sistemas job shop, no qual não existem restrições quanto ao número de operações a serem programadas nem quanto ao número de máquinas a serem alocadas, é considerado, até o presente momento, intratável do ponto de vista computacional devido à explosão combinatória inerente ao processo de programação, independente da escolha do critério de desempenho. Isto significa dizer que não existe nenhum método eficiente de programação que resolva globalmente instâncias de porte real do problema dentro de um tempo computacional considerado satisfatório. Devido a este fato, nas últimas três décadas, diversos métodos aproximados e heurísticos foram propostos e avaliados para o problema. Nesta pesquisa, é proposto e avaliado um novo método heurístico de programação. Fundamentado na pressuposição de que a melhoria na sincronização de operações de montagem em sistemas assembly shop leva ao melhor atendimento de datas de entrega de pedidos, o método implementa duas abordagens de programação: uma abordagem backward que satisfaz completamente as datas de entrega e outra forward que satisfaz completamente a restrição de capacidade de máquina. Ambas trabalham iterativamente dentro de dois modelos de simulação do sistema de produção um determinístico e outro probabilístico na busca pela melhoria da sincronização das operações e no atendimento das datas de entrega. Os resultados experimentais demonstraram que o desempenho do novo método foi em média melhor que os dos métodos não iterativos (regras) avaliados e tão bom quanto o desempenho do melhor método não iterativo (regra) testado. / This dissertation studies the problem of scheduling operations in manufacturing job shop environments where items with bill of materials are made of many fabricated and assembled components. Such systems are known as assembly shops. The general job shop scheduling problem, which no restrictions exist neither for the number of operations to be scheduled nor for the number of machines to be allocated, is considered at the present date intractable from the computational point of view, whatever the performance criterion used, due to the combinatorial explosion inherent to the scheduling process. It means that there is not an efficient computational method that solves globally real size instances of the problem within a satisfactory period of time. Due to this fact, in the last three decades several approximated and heuristic methods were created and evaluated for the problem. This research proposes and evaluate a new heuristic method which is based on the assumption that the improvement in operations synchronization at the assembly stations brings forth better achievement of due dates. The method implements two scheduling approaches: a backward approach satisfying due date completely and a forward approach satisfying capacity restriction completely. The two approaches work iteratively within two different simulation models of the production system one deterministic e other probabilistic in searching for operations synchronization improvement and due date achievement. The experimental results have shown the new method was better than the single-pass methods (rules) on average and as good as the better single-pass method (rule) tested.
|
4 |
Proposta de um modelo de simulação computacional para a programação de operações em sistemas assembly shop. / A computer simulation model for scheduling operations in assembly shop systems.Mário Tonizza Pereira 14 April 2009 (has links)
Esta dissertação estuda o problema da programação de operações em sistemas job shop de manufatura onde itens com estruturas de materiais são produzidos a partir de componentes fabricados e montados. Tais sistemas são denominados assembly shops. O caso geral do problema de programação de operações em sistemas job shop, no qual não existem restrições quanto ao número de operações a serem programadas nem quanto ao número de máquinas a serem alocadas, é considerado, até o presente momento, intratável do ponto de vista computacional devido à explosão combinatória inerente ao processo de programação, independente da escolha do critério de desempenho. Isto significa dizer que não existe nenhum método eficiente de programação que resolva globalmente instâncias de porte real do problema dentro de um tempo computacional considerado satisfatório. Devido a este fato, nas últimas três décadas, diversos métodos aproximados e heurísticos foram propostos e avaliados para o problema. Nesta pesquisa, é proposto e avaliado um novo método heurístico de programação. Fundamentado na pressuposição de que a melhoria na sincronização de operações de montagem em sistemas assembly shop leva ao melhor atendimento de datas de entrega de pedidos, o método implementa duas abordagens de programação: uma abordagem backward que satisfaz completamente as datas de entrega e outra forward que satisfaz completamente a restrição de capacidade de máquina. Ambas trabalham iterativamente dentro de dois modelos de simulação do sistema de produção um determinístico e outro probabilístico na busca pela melhoria da sincronização das operações e no atendimento das datas de entrega. Os resultados experimentais demonstraram que o desempenho do novo método foi em média melhor que os dos métodos não iterativos (regras) avaliados e tão bom quanto o desempenho do melhor método não iterativo (regra) testado. / This dissertation studies the problem of scheduling operations in manufacturing job shop environments where items with bill of materials are made of many fabricated and assembled components. Such systems are known as assembly shops. The general job shop scheduling problem, which no restrictions exist neither for the number of operations to be scheduled nor for the number of machines to be allocated, is considered at the present date intractable from the computational point of view, whatever the performance criterion used, due to the combinatorial explosion inherent to the scheduling process. It means that there is not an efficient computational method that solves globally real size instances of the problem within a satisfactory period of time. Due to this fact, in the last three decades several approximated and heuristic methods were created and evaluated for the problem. This research proposes and evaluate a new heuristic method which is based on the assumption that the improvement in operations synchronization at the assembly stations brings forth better achievement of due dates. The method implements two scheduling approaches: a backward approach satisfying due date completely and a forward approach satisfying capacity restriction completely. The two approaches work iteratively within two different simulation models of the production system one deterministic e other probabilistic in searching for operations synchronization improvement and due date achievement. The experimental results have shown the new method was better than the single-pass methods (rules) on average and as good as the better single-pass method (rule) tested.
|
Page generated in 0.0367 seconds