• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 17
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 99
  • 25
  • 22
  • 21
  • 20
  • 20
  • 15
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Uma abordagem estocástica para aumento de produtividade em linhas de montagem : o problema de balanceamento de produção /

Souza, Yuri Prado. January 2018 (has links)
Orientador: Edson Luiz França Senne / Banca: José Roberto Dale Luche / Banca: Luiz Leduino Neto / Resumo: Neste trabalho propõe-se uma abordagem para o Problema de Balanceamento de Linhas de Montagem (do inglês, Assembly Line Balancing Problem - ALBP) para aumentar a eficiência de uma indústria montadora de veículos. O ALBP caracteriza-se como um problema de sequenciamento de tarefas em estações de trabalho classificado como um problema de Otimização Combinatória NP-difícil e, portanto, a solução exata do problema em ambientes reais geralmente implica em elevado custo computacional. Para resolver o ALBP, foram formulados um modelo matemático de otimização inteira mista para obtenção de soluções determinísticas e um modelo estocástico com recurso que considera a incerteza dos tempos de execução das tarefas pelos operadores. A motivação para o desenvolvimento do presente trabalho decorre da observação de interrupções constantes do fluxo de produção nesta indústria, atribuídas às mais diversas naturezas, e que causavam transtornos e elevados níveis de estresse aos trabalhadores. Ambos os modelos, determinístico e estocástico, aumentaram a capacidade de produção de 196 unidades/dia para 245 e 233 unidades/dia, respectivamente. O modelo estocástico aumentou o tempo de ciclo CT em 5,6% quando comparado ao modelo determinístico, embora diminua a capacidade efetiva em 4,8% Porém, não considerar a incerteza no tempo de execução das tarefas pode diminuir a quantidade produzida em até 10,6%. Contrariamente ao entendimento comum em linhas de montagem, este trabalho conclui que reduzir os tem... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work proposes solution approaches to the Assembly Line Balancing Problem (ALBP) to increase the efficiency of a vehicle assembler industry. The ALBP is characterized as a task sequencing in workstations which is classified as a NP-hard Combinatorial Optimization problem and, therefore, the exact solution of the problem in real environments usually implies a high computational cost. In order to solve the ALBP, a mathematical model of mixed integer optimization to obtain deterministic solutions and a stochastic model with resource that considers the uncertainty of the execution times of the tasks by the operators were formulated. The motivation for the development of this work stems from the constant interruptions of the production flow in this industry, attributed to the most diverse natures, which cause disorders and high levels of stress to the workers. The deterministic and stochastic models increased the production capacity from 196 units / day to 245 and 233 units / day, respectively. The stochastic model increased the cycle time by 5.6% when compared to the deterministic model, although it reduced the effective capacity by 4.8%, which is equivalent to 12 vehicles / day. However, not considering the uncertainty in task execution times can decrease the amount produced by up to 10.6% or 26 vehicles / day. Contrary to the most acceptable idea, this work concludes that reducing idle times to minimum levels is detrimental to assembly line productivity. This is due to the ... (Complete abstract click electronic access below) / Mestre
62

Optimal machine selection and task assignment in an assembly system design problem

Lamar, Bruce William January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Alfred P. Sloan School of Management, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND DEWEY. / Bibliography: leaves 128-129. / by Bruce William Lamar. / M.S.
63

Compliant part mating and minimum energy chamfer design

Hennessey, Michael P January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING / Includes bibliographical references. / by Michael P. Hennessey. / M.S.
64

Economic-technological modeling and design criteria for programmable assembly machines.

Lynch, Paul Michael January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Microfiche copy available in Archives and Engineering. / Vita. / Includes bibliographical references. / Ph.D.
65

Efficient heuristics for buffer allocation in closed serial production lines

Vergara Arteaga, Hector A. 28 April 2005 (has links)
The optimal allocation of buffers in serial production systems is one of the oldest and most researched problems in Industrial Engineering. In general, there are three main approaches to the buffer allocation problem when the objective is to maximize throughput. The first is basically a systematic trial and error procedure supported either by discrete event simulation or analytical models. A second approach is to allocate buffers based on general design rules that have been established in the research literature through experimentation. And the third approach is to apply a buffer allocation optimization algorithm to a specific production line. All these approaches have limitations and could be time and resource consuming. Additionally, most of the existing research on buffer allocation only considers production systems modeled with an infinite supply of raw materials before the first workstation and an unlimited capacity for finished goods after the last workstation. In reality many production systems are designed as closed systems where an interaction between the last and the first workstations in the line is present. In a closed production system, there is a finite buffer after the last workstation and the number of "carriers" holding jobs that move through the line is fixed. The objective of this thesis was to develop efficient heuristic algorithms for the buffer allocation problem in closed production systems. Two heuristics for buffer allocation were implemented. Heuristic H 1 uses the idea that highly utilized workstation stages require any available buffer more than sub-utilized stages. Heuristic H2 uses information stored in the longest path of a network representation of job flow to determine where additional buffers are most beneficial. An experiment was designed to determine if there are any statistically significant differences between throughput values with buffer allocations obtained with a genetic algorithm, also developed in this research, and through puts with buffer allocations generated by Hi and H2. Several types of closed production systems were examined in eight different test cases. No significant differences in performance were observed. The efficiency of the heuristics was also analyzed. A significant difference between the speeds of Hi and H2 is found. The analysis performed in this research indicates that heuristic H2 is sufficiently effective and accurate for determining near optimal buffer allocations in closed production systems. / Graduation date: 2005
66

Complex materials handling and assembly systems.

January 1979 (has links)
Report covers June 1, 1976-July 31, 1978. / Each v. has also a distinctive title. / National Science Foundation. Grant NSF/RANN APR76-12036 National Science Foundation. Grant DAR78-17826
67

Complex materials handling and assembly systems.

January 1979 (has links)
Report covers June 1, 1976-July 31, 1978. / Each v. has also a distinctive title. / National Science Foundation. Grant NSF/RANN APR76-12036 National Science Foundation. Grant DAR78-17826
68

Complex materials handling and assembly systems.

January 1979 (has links)
Report covers June 1, 1976-July 31, 1978. / Each v. has also a distinctive title. / National Science Foundation. Grant NSF/RANN APR76-12036 National Science Foundation. Grant DAR78-17826
69

Complex materials handling and assembly systems.

January 1979 (has links)
Report covers June 1, 1976-July 31, 1978. / Each v. has also a distinctive title. / National Science Foundation. Grant NSF/RANN APR76-12036 National Science Foundation. Grant DAR78-17826
70

Complex materials handling and assembly systems.

January 1979 (has links)
Report covers June 1, 1976-July 31, 1978. / Each v. has also a distinctive title. / National Science Foundation. Grant NSF/RANN APR76-12036 National Science Foundation. Grant DAR78-17826

Page generated in 0.0903 seconds