Spelling suggestions: "subject:"02associated 1article"" "subject:"02associated 3article""
1 |
ASSOCIATED PARTICLE NEUTRON ELEMENTAL IMAGING FOR NONINVASIVE MEDICAL DIAGNOSTICSMichael R Abel (6594194) 10 June 2019 (has links)
<p>A novel system has been simulated with accompanying
experimental data that is designed to provide spatial information of elemental
concentrations at biologically relevant levels.
Using a deuterium-deuterium (DD) neutron generator, two large
high-purity germanium (HPGe) detectors operating in tandem, and the associated
particle imaging (API) technique, elemental iron concentrations as low as 100
ppm have been resolved <i>in vivo</i> in the
liver of a simulated reference man with an equivalent dose to the region of
interest of < 5 mSv and an estimated whole body dose of 0.82 mSv. Using the Monte Carlo Neutral Particle (MCNP)
transport code, achievable spatial resolutions in the projective and depth
dimensions of < 1 cm and < 3 cm are achievable, respectively, for
iron-containing voxels on the order of 1,000 ppm Fe – with an overall 225 ps
system timing resolution, 6.25 mm<sup>2</sup> imaging plate pixels, and a
Gaussian-distributed DD neutron source spot with a diameter of 2 mm. Additionally, as a departure from Monte Carlo
simulations, the underlying concepts of fast neutron inelastic scatter analysis
as an initial surrogate to true associated particle neutron elemental imaging
(APNEI) were demonstrated using a DD neutron generator, iron-made interrogation
targets, a sodium iodide detector, and physical neutron/gamma shielding, which
yielded an approximate detection limit for iron of 3.45 kg which was simulated
to improve to 0.44 kg upon incorporation of the associated particle collimation
methodology.</p>
The
API technique allows concentrations of elements such as iron to be quantified
due to time-tagged electronic collimation and corresponding background signal
reduction. Inherent to the API process
is the collection of spatial and temporal information, which allows the
perceived origin of a photon signal to be identified in 3D space. This process was modeled algorithmically in
MCNP and employed using relevant equipment and shielding geometries. By leveraging the capabilities of modern-day neutron
generator and coincident timing technologies with high throughput signal
processing discrimination, the applicability of APNEI to disease diagnostics
and etiological research is promising.
|
2 |
Caractérisation élémentaire par interrogation neutronique avec la technique de la particule associée / Identification of materials by an advanceded neutronic method.El Kanawati, Wassila 13 July 2011 (has links)
Le système EURITRACK, basé sur la technique de la particule associée, vise à détecter des explosifs et des drogues dans les conteneurs maritimes avec des neutrons de 14 MeV produits par la réaction D(T,)n. La particule alpha et le neutron sont émis environ à 180° l'un de l'autre. Les réactions induites par le neutron produisent des rayonnements gamma qui sont détectés en coïncidence avec la particule alpha pour déterminer la direction et le temps de vol neutronique, et ainsi remonter à l'origine des rayonnements gamma dans le conteneur. La composition chimique est obtenue par déconvolution du spectre gamma en signatures élémentaires (C, O, N, Fe,…). Les rapports des nombres de coups du carbone, de l'oxygène et de l'azote sont convertis en proportions chimiques, afin de distinguer les matières organiques bénignes et illicites, via des facteurs calculés par simulation Monte Carlo et validés expérimentalement. Ils prennent en compte la modération neutronique et l'atténuation photonique dans les marchandises transportées. L'application à la caractérisation élémentaire des déchets radioactifs est aussi étudiée par simulation, avec des écrans et collimateurs pour limiter le bruit dû à l'émission radiologique des colis. / The EURITRACK inspection system, based on the associated particle technique, aims at detecting explosives and narcotics in cargo containers with 14 MeV neutrons produced by the D(T,)n reaction. Alpha particle and neutron are emitted almost back to back. Reactions induced by fast neutrons produce gamma rays which are detected in coincidence with the alpha particle to determine the neutron direction. Neutron time-of-flight allows to determine gamma-ray origin inside the container. Information concerning material composition is obtained by unfolding the gamma spectrum into elemental signatures using a database of elemental spectra (C, O, N, Fe…). Carbon, oxygen, and nitrogen count ratios are converted into chemical proportions to distinguish illicit and benign organic materials. Conversion factors based on Monte Carlo simulations have been calculated and validated experimentally, taking into account neutron slowing down and photon attenuation in cargo materials. Application to the elemental characterisation of radioactive wastes is also studied by numerical simulation, with shields and collimators to limit the background due to waste radiations.
|
Page generated in 0.0703 seconds