• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Initial studies of structure coupling effects for a trolley/RRDF interface

Teh, Chong-Ann 03 1900 (has links)
Approved for public release; distribution is unlimited / The purpose of this thesis is to lay the foundation for analyzing structural coupling effects for a proposed trolley interface between a ship and a roll-on roll-off discharge facility (RRDF). Such a facility could allow heavy cargo transfer at higher sea states. Previous studies have analyzed motions assuming that there is no structural coupling between the trolley and the RRDF. A mathematical model that incorporates structural coupling is developed using the principle of virtual work. In order to assess the degree of necessity for the proposed model we conduct a systematic series of numerical experiments. In these calculations we model the trolley through a generalized stiffness coefficient and assess its influence on RRDF motions. It is shown that modeling of structural coupling may be necessary depending on the relative order of magnitude of trolley structural rigidity and trolley placement. / Major, Republic of Singapore Navy
2

Active Vibration Control Of A Smart Beam: A Spatial Approach

Kircali, Omer Faruk 01 September 2006 (has links) (PDF)
This study presented the design and implementation of a spatial Hinf controller to suppress the free and forced vibrations of a cantilevered smart beam. The smart beam consists of a passive aluminum beam with surface bonded PZT (Lead-Zirconate-Titanate) patches. In this study, the PZT patches were used as the actuators and a laser displacement sensor was used as the sensor. In the first part of the study, the modeling of the smart beam by the assumed-modes method was conducted. The model correction technique was applied to include the effect of out-of-range modes on the dynamics of the system. Later, spatial system identification work was performed in order to clarify the spatial characteristics of the smart beam. In the second part of the study, a spatial Hinf controller was designed for suppressing the first two flexural vibrations of the smart beam. The efficiency of the controller was verified both by simulations and experimental implementation. As a final step, the comparison of the spatial and pointwise Hinf controllers was employed. A pointwise Hinf controller was designed and experimentally implemented. The efficiency of the both controllers was compared by simulations.
3

Vibration Analysis of Beams Using Alternative Admissible Functions with Penalties

Kateel, Srividyadhare M.C. 02 February 2022 (has links)
Establishing dynamic characteristics of structures is a challenging area of research. The dynamic characteristics of structures, such as natural frequencies, modeshapes, response levels and damping characteristics play an important role in identifying the condition of the structures. The assumed modes method is a particular analytical method used to estimate the dynamic characteristics of a structure. However, the eigenfunctions used in the assumed mode method often led to ill-conditioning due to the presence of hyperbolic functions. Furthermore, a change in the boundary conditions of the system usually necessitates a change in the choice of assumed mode. In this thesis, a set of Alternative Admissible Functions (AAF), along with penalty functions, are used to obtain closed form solutions for an Euler-Bernoulli beam with various boundary conditions. A key advantage of the proposed approach is that the choice of AAF does not depend on the boundary conditions since the boundary conditions are modelled via penalty functions. The mathematical formulation is validated with different boundary conditions, Clamped-Free (CF), Simply-Supported (SS), and Clamped-Clamped (CC). A specific relation between the penalty function and the system parameters are established for CF, SS and CC boundary conditions to obtain appropriate values of penalties. Validation of results with the reported literature indicates excellent agreement when compared with closed-form Euler-Bernoulli beam values. The AAF approach with penalties is extended to a beam with a shallow crack to estimate the dynamic characteristics. The crack is modelled as a penalty function via a massless rotational spring. This model has the advantage of simplifying parametric studies, because of its discrete nature, allowing easy modification in the crack position and depth of the crack. Therefore, once the model is established, various practical applications may be performed without reformulation of the problem. Validation of results with the reported literature on beams with shallow cracks indicates the suitability of the proposed approach.
4

Prediction of engine component loads using previous measurements

Mikaelsson Elmén, Pär January 2017 (has links)
Internal combustion engines are used in many applications. The same engine type may have different components mounted to it depending upon its use. These engine mounted components need to be designed against fatigue in order to withstand the engine vibrations. Measured engine vibrations are commonly used as input data for fatigue estimation. The focus in this thesis is set on heavy-duty diesel engines, typically used in trucks, buses and industrial applications. All of the appended papers use engine vibration measurements to evaluate the proposed methods. In Paper A, the engine block motion is described with a seven degree of freedom kinematic model. These degrees of freedom consist of six rigid body modes and one assumed twisting degree of freedom. With this description, measured engine block vibrations can be used to accurately predict the vibration in positions that have not been measured. Relating the measured vibrations of an engine mounted component with the projected motion of the engine block at that same position, makes it possible to identify local dynamic phenomena. In Paper B, the kinematic model of Paper A is extended with three assumed bending deformation mode shapes. For the current engine type, all of the assumed deformation modes are ranked within the 10-300 Hz frequency range. The deformation mode of highest importance is the engine block twist. Including bending deformation increases the accuracy of the engine block vibration description but it also increases the demands on instrumentation. In Paper C, the possibility to modify measured engine vibration signals, for addition or removal of engine mounted components, is investigated. For this purpose, engine vibration measurements were performed with and without a 29 kg brake air compressor mounted to the engine. For the task of removing the effect that this engine mounted component has on the engine block, the two cases of knowing, and not knowing the vibration of the component are both considered. The proposed methodology successfully predicts the changes in engine vibration due to system modification. The proposed method can also be used to estimate the time response of a component's centre of gravity. In this study the component's dynamic properties are derived from measurements but they could also be produced using finite element analysis. This can be useful early in the design process to find critically stressed areas due to base excitation. / <p>QC 20171222</p>

Page generated in 0.0612 seconds