• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Astragaloside IV promotes haematopoiesis and enhances cytokines release by mesenchymal stromal cells mediated immune regulation

Deng, Ruixia, 邓瑞霞 January 2012 (has links)
Although tremendous efforts have been made to search for other novel growth factors in promoting marrow recovery after irradiation or chemotherapy, there have not been any efficient and safe agents discovered so far. Danggui Buxue Tang (當歸補血湯) as a traditional Chinese herbal decoction, is commonly used for replenishing blood loss in menstruating women, or enhancing erythropoiesis and immune responses in various settings. Our previous study confirmed that Danggui Buxue Tang promotes haematopoiesis and thrombopoiesis both in vitro & in vivo. Recent studies also showed that parenteral Astragalus regulates haematopoiesis in myelosuppressed mice and has protection effect on UV irradiated human dermal fibroblasts. However, astragaloside IV, as the major component of Astragalus, the "Monarch" (君葯) in Danggui Buxue Tang, the bioactivity and its possible mechanism on haematopoiesis remains unclear. My studies showed that astragaloside IV had promoting effect on different lineages of haematopoietic CFUs forming including erythrocytes, granulocytes, monocytes and megakaryocytes both in normal and irradiated mice. In the K562 and CHRF apoptotic model, astragaloside IV exerted proliferation effect and induced K562 into megakaryocytic differentiation. Astragaloside IV up-regulated phosphorylation of ERK and it was abolished by PD98059. Meanwhile, astragaloside IV increased phosphorylated ERK migration into nuclei which enhanced cell survival and differentiation. EGFR inhibitor also attenuated the enhancing effect of astragaloside IV on ERK phosphorylation. It suggested that astragaloside IV is likely to function through EGFR with subsequent activation of ERK1/2 pathway. Furthermore, astragaloside IV also increased Bcl-2/Bax ratio by up-regulating Bcl-2 alone. Bone marrow derived mesenchymal stromal cells are the major supporting cells involved in the haematopoietic microenvironment. My studies demonstrated that astragaloside IV also indirectly enhanced haematopoiesis by stimulating cytokine release from MSCs, especially IL-6, IL-8, MCP-1 and GRO1. I also found that matured and activated population of neutrophils was increased after cultured with mesenchymal stromal cells conditional medium stimulated by astragaloside IV. This finding further supported why there was a significant increment of CFU-GM in vitro culture with murine bone marrow collected from mouse model after astragaloside IV treatment, where MSCs serve as the feeder layer in such system in mice. In conclusion, my studies explored the directly and indirectly dynamic and multiple targeted function of astragaloside IV on haematopoiesis. In addition to activating haematopoietic cells, astragaloside IV also stimulated mesenchymal stromal cells to secret cytokines that could modulate haematopoiesis and up-regulated neutrophil production and maturation. It provided a holistic view on how astragaloside IV induced synergistic effect on haematopoietic cells and mesenchymal stromal cells in the marrow microenvironment. / published_or_final_version / Chinese Medicine / Doctoral / Doctor of Philosophy
2

Effects of bioactive constituents of Astragalus membranaceus on the proliferation of colon cancer and endothelial cells

Liu, Wing-yee, 廖穎宜 January 2014 (has links)
Uncontrolled cell growth may lead to pathological conditions such as cancer. During the progression of cancer, cancer cells stimulate endothelial cells for angiogenesis to support their growth and migration. Previous studies suggest that Astragalus membranaceus, of which the dried root [Astragali Radix] is used as a traditional Chinese medicine, and its bioactive components, astragalus saponins (AST), astragaloside IV (AS IV) and isoflavonoid calycosin, inhibit cancer growth. The present study aimed to examine whether or not these components inhibit the growth and/or metastasis of colon cancer cells and/or angiogenesis of endothelial cells, and to determine the possible mechanisms involved. The growth of HCT 116 colon cancer cells and human umbilical vein endothelial cells (HUVEC) after 72 hours incubation with AST (1 to 25 μg/ml), AS IV (0.5 to 100 μM) or calycosin (10 to 200 μM) were detected with thiazolyl blue tetrazolium bromide assay. Wound healing migration and tube formation assays were used to examine the metastatic and angiogenic potential of HCT 116 cells and HUVEC. Moreover, the expressions of apoptotic [B-cell lymphoma 2 and procaspase-3] and metastasis/angiogenesis-related proteins [matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor (VEGF)] were measured with Western immunoblotting. To investigate the potential mechanism(s) through which astragalus components affect the proliferation and/or migration of HCT 116 cells and HUVEC, the activities of mitogen-activated protein (MAP) kinases [extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 MAP kinase (p38) and c-Jun amino-terminal kinases] were studied by measuring the expressions of their phosphorylated and total proteins with Western immunoblotting. Calycosin (200 μM) inhibited the growth of HCT 116 cells without affecting that of HUVEC. While it inhibited the migration of both cell types, it stimulated tube formation only in HUVEC. In HCT 116 cells, calycosin downregulated the expressions of procaspase-3, VEGF, MMP-2 and MMP-9 proteins, inhibited ERK1/2 but activated p38. These effects of calycosin were not observed in HUVEC. Neither AST nor AS IV had any significant effects on the parameters studied in HCT 116 cells. AST also showed no effect in HUVEC; AS IV, at 100 μM, appeared to increase the number of tube formation by HUVEC. In conclusion, the present findings suggest that AST has no significant effect on both cancer and endothelial cells while AS IV may promote angiogenesis without any direct action in colon cancer cells. In colon cancer cells, calycosin induces apoptosis, possibly through activation of caspase-3 and p38, and inhibits metastasis, possibly by downregulating MMP-2 and MMP-9, and inhibiting ERK1/2. However, in endothelial cells, the effect of calycosin is not conclusive as it promotes tube formation but inhibits migration. These findings provide the pharmacological basis for the use of Astragali Radix in the treatment of colon cancer, and the scientific evidence for a therapeutic potential of calycosin in the management of this disorder. Further studies are needed to verify the effect of calycosin on endothelial cells. In order to better mimic the clinical situation, the interaction between cancer and endothelial cells [for example, tumor-induced angiogenesis] needs to be taken into consideration. / published_or_final_version / Pharmacology and Pharmacy / Master / Master of Philosophy
3

In vitro and in vivo mechanistic studies of the wound-healing effects of Astragali Radix and phytochemical analysis of its active fractions/components isolated using bioassay-guided fractionation. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Lai, Kwok Kin. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 229-251). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
4

The in vivo and in vitro investigations of Astragali Radix and Rehmanniae Radix formula in diabetic wound healing and its mechanisms of actions. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Tam, Chor Wing Jacqueline. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 322-359). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
5

Induction of LTB4 12-hydroxydehydrogenase (LTB4DH) by Radix Astragali and Radix Paeoniae Rubra: a study of theactive compounds and related biological functions

Wei, Lai, 魏来 January 2009 (has links)
published_or_final_version / Chinese Medicine / Master / Master of Philosophy

Page generated in 0.1097 seconds