Spelling suggestions: "subject:"astronomi, astrofysik ocho cosmologia"" "subject:"astronomi, astrofysik ocho cosmological""
181 |
Stellar populations in the Green Pea galaxy J1457+2232 : Study of possible age gradients by using highly resolved HST broad band imaging of the Green Peagalaxy SDSS-J145735.13+223201.8 at redshift 0.15.Malmgren, Jan January 2019 (has links)
Abstract In this report I present a study of possible age gradients in the Green Pea galaxy J145735.13+223201.8 to be able to conclude if there is an extended star forming history in such a galaxy. Data are coming from two different sources, highly resolved images in four different wavelengths of stars in the galaxy, and of nebular gas in a narrow band Ha Balmer line filter, from the Hubble Space Telescope (HST), as well as spectral line information from the Sloan Digital Sky Survey (SDSS). I compare the observations with stellar population models from two different libraries, Yggdrasil and Starburst99. Due to the highly resolved images from HST this is one of the first studies of spatially resolved stellar populations in a Green Pea galaxy. With the help from these spatially resolved images it was possible to study star clumps independently from each other. This would not be possible when using only data from SDSS. In this way it was possible to conclude an age difference between the centre of the galaxy and its outskirts. I found that the galaxy has an age gradient at a confidence level greater than 95%.
|
182 |
Type-1 Active Falactic Nuclei and their SupernovaeImaz Chacon, Inigo January 2019 (has links)
Supernovae (SNe) and more specifically Core-Collapsed SNe (CC SNe) are signatures of on-going star formation (SF), and higher star formation rates. In this project, we perform a study of all SNe ever discovered inside a specific type of galaxy: a type-1 Active Galactic Nucleus (AGN1). We calculate the SN detection fraction for CC SNe and thermonuclear SNe in AGN1. In AGN1, inclination of the host galaxy and the radial distance of the SN to the center of the galaxy are displayed. As a second goal, we gather all SNe from the OpenSN catalogue found close to an AGN1, classify them and compare them with the full sample of OpenSN catalogue host galaxies. Results:We found and calculated the SN detection fraction of AGN1s. We found 16 SNe exploding in 13 different AGN1 host galaxies. The CC/Ia SN ratio is ~ 0.78. Comparing by similar morphology, the AGN1-host galaxies with all the host galaxies from OpenSN, we see that the detection fractions are higher in spiral AGN1 hosts than in normal spiral galaxies, but the difference is not significant (~ 0.4\sigma) to be considered.
|
183 |
Investigating super-Eddington accretion flows in Ultraluminous X-ray sourcesGúrpide Lasheras, Andrés January 2018 (has links)
It is now widely known that most of the large galaxies we observe (e.g. the Milky Way) host in their center a supermassive black hole ($10^{6}-10^{9}$ $M_\odot$). Several relationships between the central black hole mass and the properties of the stars in the central part of the galaxy have been established in the past 3 decades indicating that the central black hole is able to efficiently structure the matter around it due to episodes of accretion of matter onto the black hole. Recent infrared and optical sky surveys have detected supermassive black holes with masses around $10^{8-9}$ $M_\odot$ when the universe was less than a tenth of its current age and current theories have difficulties explaining how such massive objects could have formed over such short timescales. The goal of the present work is to shed light on the properties of a still largely unknown extreme accretion regime, the so called super-Eddington accretion regime. If such accretion regime could be sustained over sufficient timescales, it could play an important role in both the rapid growth of supermassive black holes as well as its co-evolution with its host galaxy. The aim of this work is therefore to apply high resolution spectroscopy to Ultraluminous X-ray sources in order to identify narrow spectral features to derive constrains on the outflows expected from super-Eddington accreting sources using data from the XMM-Newton observatory. For this purpose I developed a framework to analyse low count background dominated spectra that uses a Monte Carlo approach to detect these narrow features. After analysis of the source Holmberg II X-1, I identify 7 unresolved discrete features with a 3$\sigma$ confidence level that can be tentatively identified with ionic species. Furthermore, the instrumental resolution allows us to put upper limits on the broadening of the lines. This findings will allow us to probe the properties of the outflows of the super-Eddington regime and by extending the analysis to other sources we will able to characterize the observational properties of this accretion regime.
|
184 |
Searching for Gamma Rays from Galaxy Clusters with the Fermi Large Area Telescope : Cosmic Rays and Dark MatterZimmer, Stephan January 2013 (has links)
In this licentiate thesis, I report a search for GeV γ rays towards the location of Galaxy clusters. I mainly discuss the results of a search for cosmic-ray (CR) induced γ-ray emission but also briefly elaborate on a related study, searching for Dark Matter (DM)-induced γ-ray emission from Galaxy clusters. In addition, I provide a detailed discussion on the analysis tools that were used and discuss some additional tests that are not included in the papers this licentiate thesis is based on. In a comprehensive search almost covering the entire sky, we find no statistically significant evidence for either DM or CR induced γ rays from galaxy clusters. Thus we report upper limits on CR quantities that exclude emission scenarios in which the maximum hadronic injection efficiency is larger than 21% and associated limits on the maximum CR-to-thermal pressure ratio, <XCR>. In addition, we update previous flux upper limits given a new set of modeling and taking the source extension into account. For a DM masses below 100 GeV, we exclude annihilation cross sections above ∼ 10−24 cm3 s−1 into bb. For decaying DM, we exclude decay times lower than 1027 s over the mass range of 20 GeV– 2 TeV.
|
185 |
Gravitational Waves and the Stability of Binary SystemsPereira, Rheymisson January 2017 (has links)
This project contains an exposition of the basics of General Relativity up to the study of Gravitational Waves. The goal is to apply this theory to understand binary systems, how they generate gravitational waves and the energy they lose in doing so. Gravitational waves have been a topic of interest in relativity ever since their theoretical prediction in 1916. Now the interest in the subject has been renewed since LIGO's announcement of the first detection of gravitational waves, proving once again the power of General Relativity. This topic is very promising because of its implications in the future of astronomy and cosmology as a new method to obtain information about our universe.
|
186 |
Identification of elements and molecules in the spectra of an M dwarf star using high resolution infrared spectroscopy.Pudas, Markus January 2017 (has links)
M dwarfs are abundant and long-lived stellar objects. The formation of planets around stars in stellar systems is believed to be metallicity dependent. To determine the metallicity with synthetic spectrum analysis, the elements producing the absorption lines ofthe spectra first have to be identified. The aim of this thesis is to identify and list the elements or molecules that produce the absorption lines in the spectra of Barnard's star. This thesis was done at the Division for Astronomy and Space Physics at Uppsala University. High resolution infrared spectral data recorded in the J band 1.1–1.4 μm was downloaded from the CRIRES-POP database. The data had to be wavelength corrected due to the effects of Doppler shift. A modified IDL program was used to read the data files,normalize the flux to unity and plot the spectra. This procedure was also done with the telluric spectra using data from a solar flux atlas. The IDL program plotted the normalized spectra together in the same plot. With this procedure the absorption features originating from the earth’s atmosphere could be identified and discarded. The analysis of the spectral lines resulted in wavelength values which were tested against the VALD3 database to determine what elements were possibly responsible for the absorption features. The results are presented in a line list. It can be used with other software programs to determine the metallicity. The identified elements and molecules agrees in part with earlier measurements of stellar spectra from M dwarf stars except for a number of lines where no matching elements were found in the VALD3 database. A line list with possible elements in the photosphere of Barnard’s star can be constructed from the spectra using high-resolution infrared spectroscopy. / M dvärgstjärnor är de mest förekommande stjärnorna i vår galax. De har en mycket långlivslängd, vissa tusen gånger längre än vår sol. Det finns teorier om att planetbildning runt stjärnor styrs av halten av ämnen som inte är väte eller helium. Denna halt kallas metallicitet. För att på konstgjord eller syntetisk väg bestämma metalliciteten i Barnard’s stjärna, en M dvärg, behöver de ämnen som bidrar till absorptionslinjerna i fotosfären först identifieras. Målsättningen med detta arbete var att identifiera de grundämnen och eventuella molekyler som skapar absorptionslinjerna i spektrumet till Barnard’s stjärna. Detta arbete utfördes på institutionen för fysik och astronomi. Metoden använde ett modifierat IDL program för att läsa och plotta data. Högupplöst infraröd spektraldata från Jbandet (1.1–1.4 μm) till Barnard’s stjärna hämtades från CRIRES-POP databasen och data för det telluriska spektrumet från en databas med telluriska linjer. Därefter plottades de samtidigt i ett våglängdsöverlappande normaliserat spektra. I programmet gick absorptionslinjer som inte hade sitt ursprung i jordens atmosfär att urskilja manuellt. Då våglängderna för absorptionlinjerna bestämts, matades värden in i databasen VALD3. Analysen av de returnerade värdena från VALD3 genererade en resultatlista med de mest sannolika elementen för de olika absorptionsvåglängderna. Resultatlistan kan användas som ingångsvärde till program som syntetiskt beräknar metalliciteten. Resultaten överensstämmer till viss del med tidigare mätningar. Slutsatsen är att metoden med högupplöst infraröd spektral data kan användas för att bestämma en lista med element och molekyler från fotosfären i Barnard’s stjärna.
|
187 |
High energy gamma ray emission and multi-wavelength view of the AGN PKS 0537-441Fransson, Emma January 2017 (has links)
This thesis describes the analysis of Very High Energy (VHE) emission from the Active Galactic Nucleus PKS 0537-441. It also aims to put the results in a wider context by implementing previous work done on this source. The data chosen for the analysis is provided by the Fermi-LAT satellite and covers the energy range between 300 MeV and 300 GeV. Initially a lightcurve of the received flux from the source was generated, containing data from August 2008 to April 2017, with a mean flux of 4∗10−8 photons per second per squared centimeter. The lightcurve contained sections of different flux intensities giving periods of special interest, such as a flaring period at August 2008 to August 2011, an enormous flare at April 2010 and a less active period between April 2013 - January 2016 that could be identified for further investigations. The differences in observed flux over time was tested and PKS 0537-441 was found to be a significantly variable source. Spectral Energy Distribution (SED) analysis was performed over both the entire period as well as over the selected subperiods and fitted against models using the tools provided by the Fermi Science Support Center (FSSC). The models used in the fitting was PowerLaw2, LogParabola and PLSuperExpCutoff and the best fit for the data was obtained from the PLSuperExpCutoff, except for the less intense period where the LogParabola gave the best fit. The result from the SED analysis was integrated with results from previous work done on the source, ranging over multiple wavelengths in order to get a SED which spanned over the entire electromagnetic spectrum. Finally, modeling of this multi wavelength SED was performed in order to obtain parameters for the physical processes involved in the creation of the radiation received from PKS 0537-441.
|
188 |
Metallicity determination of M dwarfsLindgren, Sara January 2017 (has links)
M dwarfs constitute around 70% of all stars in the local Galaxy. Their multitude together with their long main-sequence lifetimes make them important for studies of global properties of the Galaxy such as the initial mass function or the structure and kinematics of stellar populations. In addition, the exoplanet community is showing an increasing interest for those small, cold stars. However, very few M dwarfs are well characterized, and in the case of exoplanetary systems the stellar parameters have a direct influence on the derived planet properties. Stellar parameters of M dwarfs are difficult to determine because of their low surface temperatures that result in an optical spectrum dominated by molecular lines. Most previous works have therefore relied on empirical calibrations. High-resolution spectrographs operating in the infrared, a wavelength region less affected by molecular lines, have recently opened up a new window for the investigation of M dwarfs. In the two first papers of this thesis we have shown that we can determine the metallicity, and in some cases the effective temperature, using synthetic spectral fitting with improved accuracy. This method is time consuming and therefore not practical or even feasible for studies of large samples of M dwarfs. When comparing our results from the high-resolution studies with available photometric calibrations we find systematic differences. In the third paper we therefore used our sample to determine a new photometric metallicity calibration. Compared to previous calibrations our new photometric calibration shows improved statistical characteristics, and our calibration gives similar results as spectroscopic calibrations. In a comparison with theoretical calculations we find a good agreement of the shapes and slopes of iso-metallicity lines with our empirical relation. Applying the photometric calibration to a sample of M dwarfs with confirmed exoplanets we find a possible giant planet-metallicity correlation for M dwarfs.
|
189 |
The Largest Void and Cluster in Non-Standard CosmologyCastello, Sveva January 2020 (has links)
We employ observational data about the largest cosmic void and most massive galaxy cluster known to date, the 'Cold Spot' void and the 'El Gordo' cluster, in order to constrain the parameter |fR0| from the f(R) gravity formulation by Hu and Sawicki and the matter power spectrum normalization at present time, σ8. We obtain the marginalized posterior distribution for these two parameters through a Markov Chain Monte Carlo analysis, where the likelihood function is modeled through extreme value statistics. The prior distribution for the additional cosmological parameters included in the computations (Ωdmh2, Ωbh2, h and ns) is matched to recent constraints. By combining the likelihood functions for both voids and clusters, we obtain a mean value log|fR0| = -5.1 ± 1.6, which is compatible with General Relativity (log|fR0| ≤-8) at 95% confidence level, but suggests a preference for a non-negligible modified gravity correction.
|
190 |
Ultraluminous sources in X-ray sky surveysColom i Bernadich, Miquel January 2020 (has links)
Ultraluminous X-ray sources (ULXs) are extragalactic, non-nuclear, point-like X-ray sources whose luminosity supersedes that of the Eddington limit of an accreting stellar mass black hole (L> 10 ^ 39 erg / s). Most of them are powered by black holes and neutron stars undergoing genuine super-Eddington accretion, with a small handful of candidates being consistent with sub-Eddington accretion on an intermediate mass black hole. In this thesis, we explore the populations of ULXs in the sky surveys of ESA's X-ray satellite, XMM-Newton, and the MPE's newly launched X-ray telescope, eROSITA. We do so by correlating them with the HECATE list of galaxiesto build two X-ray non-nuclear catalogs, and comparing the yields with very expensive surveys and previous works. To build a catalog, we useother reference lists of contaminant objects, such as the Gaia data releases, the SIMBAD database or the SDSS survey to look for contaminating objects of diverse nature, such as foreground stars or background quasars, in order to make sure that our resulting ULX samples are as clean as possiblewith catalog data only. Our results include the attestation that the XMM-Newton ninth data release provides an improvement in quantity and quality with respect to older data releases used in previous works, and that the eROSITA survey is currently in a very preliminary stage. The two new catalogs contain 12,952 and 3,720 non-nuclear X-ray sources, out of which 914 and 132 are ULX candidates with an expected ~ 25% fraction of undetected contaminants. This constitutes a very significant contribution to the already known 300 ULX candidates. Since the sky coverage and depth of the XMM-Newton and eROSITA surveys are vastly different, only 19 of the ULX candidates are shared between the catalogs. ULX candidates are preferentially found in star-forming galaxies, but a subset of very bright objects (L> 5x10 ^ 40 erg / s) try to be more common in elliptical galaxies, in contradiction to what has been established in the literature. / <p>This thesis was written under the joint supervision of Erin O'Sullivan at Uppsala University and Axel Schwope at the Leibniz Institute for Astrophysics in Potsdam. The presentation was held online due to the COVID-19 circumstances.</p> / Master Thesis
|
Page generated in 0.1013 seconds