• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 2
  • Tagged with
  • 54
  • 54
  • 54
  • 54
  • 15
  • 15
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

X-ray emission from supernova shock waves

Nymark, Tanja January 2007 (has links)
<p>A theoretical study of the interaction between supernovae and their surroundings is presented.</p><p>Supernovae are the endpoint of the life of massive stars, and are the dominant contributors to the chemical evolution of the Universe. During its life a massive star greatly modifies its environment. During and after the explosion of the star it interacts with its surroundings in a number of ways. A study of this interaction yields invaluable information about the late stages of stellar evolution and the physics of supernova explosions. Recent advances in observational facilities have given a wealth of observational data on interacting supernovae, and it is therefore essential to have good theoretical models for interpreting the data.</p><p>This thesis presents an overview of the physics of supernovae and of their interaction with a circumstellar medium. In particular the reverse shock created by the interaction is investigated. In most Type IIL and Type IIn supernovae this shock is radiative, and due to the high temperature most of the radiation comes out as X-rays. A numerical model is presented which calculates the emission from the cooling region behind the reverse shock in a self-consistent way, by combining a hydrodynamic model with a time-dependent ionization balance and multilevel calculations. This has been applied to some of the best cases of circumstellar interaction.</p><p>As a further application of the model the radio and X-ray emission from Type IIP supernovae is discussed. We estimate the mass loss rate of the progenitors of Type IIP supernovae, and find that a superwind phase is not required.</p><p>VLT observations of the ring of SN 1987A show broad optical emission lines coming from a range of ionization stages, in particular optical coronal lines of Fe X-XIV. Models of the line emission indicate that the lines are formed by cooling shocks with shock velocities in the range 310-390 km/s, confirming the picture of shocks striking the protrusions from the ring obliquely.</p><p>X-ray observations of the Type IIb SN 1993J and Type IIn SN 1998S are analyzed. For SN 1993J we find that the spectrum is best fit with a CNO-enriched composition. For SN 1998S we find that the high metal overabundance that has previously been claimed, is not necessary when a self-consistent model of the cooling region is applied.</p>
2

Spectral and Temporal Studies of Gamma-Ray Bursts

Borgonovo, Luis January 2007 (has links)
<p>Gamma-ray bursts (GRBs) are sporadic flashes of light observed primarily in the gamma-ray band. Being the brightest explosions in the Universe since its birth, they are at present also the furthest astronomical sources detected. Since their serendipitous discovery in the late 1960s the study of GRBs has grown into one of the most active fields in astrophysics with ramifications in many other scientific areas.</p><p>Despite intense studies many of the basic questions about the nature of GRBs remain unanswered. Long duration bursts are believed to be the result of ultra-relativistic outflows associated with the collapse of very massive stars. The mechanisms responsible for the emission, the geometry of the emitter, and the radiative processes involved are still a matter of research. Common multi-pulse bursts display a spectral evolution as complex as their light curves. However, it is unclear what produces the observed variability. The works presented in this thesis aim to build the necessary base to answer these open questions.</p><p>A characterization of the spectral evolution is presented (based on time-resolved spectral analysis) that provides insight into the underlying emission processes and imposes severe constraints on current physical models (Paper I).</p><p>We report the results of a multi-variate analysis on a broad range of GRB physical parameters covering temporal and spectral properties. Empirical relations were found that indicate a self-similar property in burst light curves and a luminosity correlation with potential use as a distance indicator (Paper II).</p><p>Determining the relevant timescales of any astronomical phenomenon is essential to understand its associated physical processes. Linear methods in time-series analysis are powerful tools for the researcher that can provide insight into the underlying dynamics of the studied systems. For the first time these methods were used on GRB light curves correcting for cosmic time dilation effects which revealed two classes of variability. The possible origin of these classes is discussed (Papers III & IV).</p>
3

Lyman-alpha imaging of starburst galaxies in the local universe and beyond

Hayes, Matthew January 2007 (has links)
<p>The last decade has seen huge advances in studies of astrophysical cosmology, primarily as a result of developments in telescopic facilities. One of the primary observational signatures of actively star forming galaxies in the distant universe is the Lyman-alpha emission line (Lyα). The line is used either to search for objects or as a spectral feature for definite redshift confirmation. In recent years, high-z Lyα surveys have been used to constrain cosmic star formation history, investigate large scale structure, and examine the neutral hydrogen fraction of the universe. This doctoral thesis is directly concerned with studies of the Lyα emission from star-forming galaxies and the validity of Lyα as a cosmological tool.</p><p>The approach is to study a sample of local actively star forming galaxies using data obtained with the Hubble Space Telescope (HST). Imaging observations have been performed in the Lyα line, Hα, and various continuum bandpasses in the ultraviolet and optical wavelength domains. Sophisticated tools have been developed for the analysis of the images, resulting also in theoretical exploration of Lyα-related observables from galaxies at high-z. Model simulations are presented, along with a methodology by which to interpret high-z survey data. HST imaging results call into question the interpretations of many high-z Lyα surveys. More specifically, the first direct observational evidence is presented for the emission of Lyα photons after resonant scattering in neutral hydrogen and low surface-brightness Lyα halos are found as a result. Imaging reveals Lyα morphologies that systematically differ from morphologies probed by stellar light or non-resonant tracers of the nebular gas. Based upon Hα observations and recombination theory, the fraction of Lyα photons that escape is found never to exceed 20% in any of the observed targets, despite the violent star-formation known to be taking place. Even after internal dust corrections, a deficit from the predicted Lyα/Hα line ratio is always found. The interpretation is that scattering events systematically enhance the probability of absorption of Lyα by dust grains. If these galaxies are representative of those that fall into the data-sets of high-z Lyα surveys, some cosmological estimates may be in error by an order of magnitude.</p>
4

X-ray emission from supernova shock waves

Nymark, Tanja January 2007 (has links)
A theoretical study of the interaction between supernovae and their surroundings is presented. Supernovae are the endpoint of the life of massive stars, and are the dominant contributors to the chemical evolution of the Universe. During its life a massive star greatly modifies its environment. During and after the explosion of the star it interacts with its surroundings in a number of ways. A study of this interaction yields invaluable information about the late stages of stellar evolution and the physics of supernova explosions. Recent advances in observational facilities have given a wealth of observational data on interacting supernovae, and it is therefore essential to have good theoretical models for interpreting the data. This thesis presents an overview of the physics of supernovae and of their interaction with a circumstellar medium. In particular the reverse shock created by the interaction is investigated. In most Type IIL and Type IIn supernovae this shock is radiative, and due to the high temperature most of the radiation comes out as X-rays. A numerical model is presented which calculates the emission from the cooling region behind the reverse shock in a self-consistent way, by combining a hydrodynamic model with a time-dependent ionization balance and multilevel calculations. This has been applied to some of the best cases of circumstellar interaction. As a further application of the model the radio and X-ray emission from Type IIP supernovae is discussed. We estimate the mass loss rate of the progenitors of Type IIP supernovae, and find that a superwind phase is not required. VLT observations of the ring of SN 1987A show broad optical emission lines coming from a range of ionization stages, in particular optical coronal lines of Fe X-XIV. Models of the line emission indicate that the lines are formed by cooling shocks with shock velocities in the range 310-390 km/s, confirming the picture of shocks striking the protrusions from the ring obliquely. X-ray observations of the Type IIb SN 1993J and Type IIn SN 1998S are analyzed. For SN 1993J we find that the spectrum is best fit with a CNO-enriched composition. For SN 1998S we find that the high metal overabundance that has previously been claimed, is not necessary when a self-consistent model of the cooling region is applied.
5

Spectral and Temporal Studies of Gamma-Ray Bursts

Borgonovo, Luis January 2007 (has links)
Gamma-ray bursts (GRBs) are sporadic flashes of light observed primarily in the gamma-ray band. Being the brightest explosions in the Universe since its birth, they are at present also the furthest astronomical sources detected. Since their serendipitous discovery in the late 1960s the study of GRBs has grown into one of the most active fields in astrophysics with ramifications in many other scientific areas. Despite intense studies many of the basic questions about the nature of GRBs remain unanswered. Long duration bursts are believed to be the result of ultra-relativistic outflows associated with the collapse of very massive stars. The mechanisms responsible for the emission, the geometry of the emitter, and the radiative processes involved are still a matter of research. Common multi-pulse bursts display a spectral evolution as complex as their light curves. However, it is unclear what produces the observed variability. The works presented in this thesis aim to build the necessary base to answer these open questions. A characterization of the spectral evolution is presented (based on time-resolved spectral analysis) that provides insight into the underlying emission processes and imposes severe constraints on current physical models (Paper I). We report the results of a multi-variate analysis on a broad range of GRB physical parameters covering temporal and spectral properties. Empirical relations were found that indicate a self-similar property in burst light curves and a luminosity correlation with potential use as a distance indicator (Paper II). Determining the relevant timescales of any astronomical phenomenon is essential to understand its associated physical processes. Linear methods in time-series analysis are powerful tools for the researcher that can provide insight into the underlying dynamics of the studied systems. For the first time these methods were used on GRB light curves correcting for cosmic time dilation effects which revealed two classes of variability. The possible origin of these classes is discussed (Papers III &amp; IV).
6

Lyman-alpha imaging of starburst galaxies in the local universe and beyond

Hayes, Matthew January 2007 (has links)
The last decade has seen huge advances in studies of astrophysical cosmology, primarily as a result of developments in telescopic facilities. One of the primary observational signatures of actively star forming galaxies in the distant universe is the Lyman-alpha emission line (Lyα). The line is used either to search for objects or as a spectral feature for definite redshift confirmation. In recent years, high-z Lyα surveys have been used to constrain cosmic star formation history, investigate large scale structure, and examine the neutral hydrogen fraction of the universe. This doctoral thesis is directly concerned with studies of the Lyα emission from star-forming galaxies and the validity of Lyα as a cosmological tool. The approach is to study a sample of local actively star forming galaxies using data obtained with the Hubble Space Telescope (HST). Imaging observations have been performed in the Lyα line, Hα, and various continuum bandpasses in the ultraviolet and optical wavelength domains. Sophisticated tools have been developed for the analysis of the images, resulting also in theoretical exploration of Lyα-related observables from galaxies at high-z. Model simulations are presented, along with a methodology by which to interpret high-z survey data. HST imaging results call into question the interpretations of many high-z Lyα surveys. More specifically, the first direct observational evidence is presented for the emission of Lyα photons after resonant scattering in neutral hydrogen and low surface-brightness Lyα halos are found as a result. Imaging reveals Lyα morphologies that systematically differ from morphologies probed by stellar light or non-resonant tracers of the nebular gas. Based upon Hα observations and recombination theory, the fraction of Lyα photons that escape is found never to exceed 20% in any of the observed targets, despite the violent star-formation known to be taking place. Even after internal dust corrections, a deficit from the predicted Lyα/Hα line ratio is always found. The interpretation is that scattering events systematically enhance the probability of absorption of Lyα by dust grains. If these galaxies are representative of those that fall into the data-sets of high-z Lyα surveys, some cosmological estimates may be in error by an order of magnitude.
7

Numerical simulations of type III planetary migration

Peplinski, Adam January 2008 (has links)
<p>Planets are believed to form in primordial gas-dust discs surrounding newborn stars. An important breakthrough in our understanding of planetary formation was the discovery of extra-solar planets around sun-like stars, especially the frequent occurrence of giant planets on close orbits (hot Jupiters). The mechanisms involved in the formation of these objects remain uncertain, however the difficulties associated with their formation at their observed orbital radius has awoken an interest in theories for the migration of protoplanetary cores due to gravitational interaction with the disc. There are three fundamental regimes of planet migration. The type I and II migration regimes, driven by the differential Lindblad torques, result mostly in inward migration and concern low- and high-mass planets respectively. Type III migration, driven by the co-orbital gas flow, concerns an intermediate range of planetary masses and does not have a predefined direction.</p><p>In this thesis the orbital evolution of a high-mass, rapidly (type III) migrating planet is investigated using numerical hydrodynamical simulations. For these simulations we used the state-of-the-art hydrodynamics code FLASH. We focus on the physical aspects of type III migration. However, the problem of rapid migration of such massive planets is numerically challenging, and the disc model has to be chosen carefully, using numerical convergence as a discriminator between models (Paper I). We simulate both inward and outward directed migration (Papers II and III) and provide an extensive description of the co-orbital flow responsible for driving the migration, as well as its time evolution. The migration rate due to type III migration is found to be related to the mass of the planet's co-orbital region, making inward and outward directed migration self-decelerating and self-accelerating processes respectively (for a standard disc model). Rapid migration depends strongly on the flow structure in the planet's vicinity, which makes it sensitive to the amount of mass accumulated by the planet as it moves through the disc. This quantity in turn depends on the structure of the accretion region around the planet. The results of the numerical simulations show a good agreement with the analytical formulation of type III migration (Paper IV).</p>
8

Numerical simulations of type III planetary migration

Peplinski, Adam January 2008 (has links)
Planets are believed to form in primordial gas-dust discs surrounding newborn stars. An important breakthrough in our understanding of planetary formation was the discovery of extra-solar planets around sun-like stars, especially the frequent occurrence of giant planets on close orbits (hot Jupiters). The mechanisms involved in the formation of these objects remain uncertain, however the difficulties associated with their formation at their observed orbital radius has awoken an interest in theories for the migration of protoplanetary cores due to gravitational interaction with the disc. There are three fundamental regimes of planet migration. The type I and II migration regimes, driven by the differential Lindblad torques, result mostly in inward migration and concern low- and high-mass planets respectively. Type III migration, driven by the co-orbital gas flow, concerns an intermediate range of planetary masses and does not have a predefined direction. In this thesis the orbital evolution of a high-mass, rapidly (type III) migrating planet is investigated using numerical hydrodynamical simulations. For these simulations we used the state-of-the-art hydrodynamics code FLASH. We focus on the physical aspects of type III migration. However, the problem of rapid migration of such massive planets is numerically challenging, and the disc model has to be chosen carefully, using numerical convergence as a discriminator between models (Paper I). We simulate both inward and outward directed migration (Papers II and III) and provide an extensive description of the co-orbital flow responsible for driving the migration, as well as its time evolution. The migration rate due to type III migration is found to be related to the mass of the planet's co-orbital region, making inward and outward directed migration self-decelerating and self-accelerating processes respectively (for a standard disc model). Rapid migration depends strongly on the flow structure in the planet's vicinity, which makes it sensitive to the amount of mass accumulated by the planet as it moves through the disc. This quantity in turn depends on the structure of the accretion region around the planet. The results of the numerical simulations show a good agreement with the analytical formulation of type III migration (Paper IV).
9

Radio waves in the ionosphere : Propagation, generation and detection

Carozzi, Tobia January 2000 (has links)
We discuss various topics concerning the propagation, generation, and detec-tionof high-frequency (HF) radio waves in the Earth's ionosphere. With re-gardsto propagation, we derive a full wave Hamiltonian and a polarization evo-lutionequation for electromagnetic waves in a cold, stratified magnetoplasma.With regards to generation, we will be concerned with three experiments con-ducted at the ionosphere- radio wave interaction research facilities at Sura, Rus-siaand Tromsø, Norway. These facilities operate high power HF transmittersthat can inject large amplitude electromagnetic waves into the ionosphere andexcite numerous nonlinear processes. In an experiment conducted at the Surafacility, we were able to measure the full state of polarization of stimulatedelectromagnetic emissions for the first time. It is expected that by using thetechnique developed in this experiment it will be possible to study nonlinearpolarization effects on powerful HF pump waves in magnetoplasmas in the fu-ture.In another experiment conducted at the Sura facility, the pump frequencywas swept automatically allowing rapid, high-resolution measurements of SEEdependence on pump frequency with minimal variations in ionospheric condi-tions.At the Tromsø facility we discovered by chance a highly variable, pumpinduced, HF emission that most probably emanated from pump excited spo-radicE. Regarding detection, we have proposed a set of Stokes parametersgeneralized to three dimension space; and we have used these parameters in aninvention to detect the incoming direction of electromagnetic waves of multiplefrequencies from a single point measurement.
10

The coronal heating problem

Gudiksen, Boris V. January 2004 (has links)
<p>The heating of the solar corona has been investigated during four of decades and several mechanisms able to produce heating have been proposed. It has until now not been possible to produce quantitative estimates that would establish any of these heating mechanism as the most important in the solar corona. In order to investigate which heating mechanism is the most important, a more detailed approach is needed.</p><p>In this thesis, the heating problem is approached ”ab initio”, using well observed facts and including realistic physics in a 3D magneto-hydrodynamic simulation of a small part of the solar atmosphere. The ”engine” of the heating mechanism is the solar photospheric velocity field, that braids the magnetic field into a configuration where energy has to be dissipated. The initial magnetic field is taken from an observation of a typical magnetic active region scaled down to fit inside the computational domain. The driving velocity field is generated by an algorithm that reproduces the statistical and geometrical fingerprints of solar granulation. Using a standard model atmosphere as the thermal initial condition, the simulation goes through a short startup phase, where the initial thermal stratification is quickly forgotten, after which the simulation stabilizes in statistical equilibrium. In this state, the magnetic field is able to dissipate the same amount of energy as is estimated to be lost through radiation, which is the main energy loss mechanism in the solar corona.</p><p>The simulation produces heating that is intermittent on the smallest resolved scales and hot loops similar to those observed through narrow band filters in the ultra violet. Other observed characteristics of the heating are reproduced, as well as a coronal temperature of roughly one million K. Because of the ab initio approach, the amount of heating produced in these simulations represents a lower limit to coronal heating and the conclusion is that such heating of the corona is unavoidable.</p>

Page generated in 0.0833 seconds