• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 2
  • Tagged with
  • 54
  • 54
  • 54
  • 54
  • 15
  • 15
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Dynamical Spin Vector Evolution of the Asteroids

Skoglöv, Erik January 2002 (has links)
The dynamical evolution of the spin axis direction due to gravitational and thermal factors is examined. It is found that the spin axis variations generally are regular and relatively small for the bodies in the asteroid main belt. There are also reasons to believe that this is the case for minor objects beyond the main belt. However, it is found that these regular variations are larger when the orbital inclination of the objects is increased. This effect may explain certain features in the spin vector distribution of the main belt asteroids, not possible to explain by collisional factors. The spin vector evolution of the asteroids in the inner solar system, including the Earth- and Mars-crossing objects, is often subjected to strong forces related to frequencies in the orbital evolution. The variations in the spin vector direction are then very large and often subjected to chaos. The larger frequency related obliquity zones of the Mars-crossers are usually regular while the zones of the Earth-Mars-crossers often are of a chaotic nature. The spin vector evolution of asteroids with comet-like orbits is often chaotic regardless of initial obliquity. For the inner solar system asteroids, it is often possible for an initial prograde spin to turn into a retrograde one, or vice versa, due to the frequency related phenomena. Though some spin vector directions seem to be more probable than other ones over time, there are no indications for an evolution towards a more prograde or a more retrograde spin vector distribution. The effects on the spin vector evolution from the thermal Yarkovsky force are examined for objects with radii larger than 50 m. This force will affect the orbital evolution and thus indirectly affect the spin vector evolution. However, it is found that the studied effects are minor as compared to the gravitationally related ones. This is true both for the diurnal and the seasonal variants of the Yarkovsky force.
22

Molecular gas in the galaxy M83 : Its distribution, kinematics, and relation to star formation

Andersson Lundgren, Andreas January 2004 (has links)
The barred spiral galaxy M83 (NGC5236) has been observed in the 12CO J=1–0 and J=2–1 millimetre lines with the Swedish-ESO Submillimetre Telescope (SEST). The sizes of the CO maps are 100×100, and they cover the entire optical disk. The CO emission is strongly peaked toward the nucleus. The molecular spiral arms are clearly resolved and can be traced for about 360º. The total molecular gas mass is comparable to the total Hi mass, but H2 dominates in the optical disk. Iso-velocity maps show the signature of an inclined, rotating disk, but also the effects of streaming motions along the spiral arms. The dynamical mass is determined and compared to the gas mass. The pattern speed is determined from the residual velocity pattern, and the locations of various resonances are discussed. The molecular gas velocity dispersion is determined, and a trend of decreasing dispersion with increasing galactocentric radius is found. A total gas (H2+Hi+He) mass surface density map is presented, and compared to the critical density for star formation of an isothermal gaseous disk. The star formation rate (SFR) in the disk is estimated using data from various star formation tracers. The different SFR estimates agree well when corrections for extinctions, based on the total gas mass map, are made. The radial SFR distribution shows features that can be associated with kinematic resonances. We also find an increased star formation efficiency in the spiral arms. Different Schmidt laws are fitted to the data. The star formation properties of the nuclear region, based on high angular resolution HST data, are also discussed.
23

Energy Calibration of Different Modes of a pn-CCD-camera on board the X-Ray Observatory XMM-Newton

Winroth, Gustaf January 2007 (has links)
The X-ray Multi-mirror Mission, XMM-Newton was launched by the European Space Agency, ESA, in 1999. XMM-Newton carries six cameras, including a silicon pn-junction Charge Coupled Device, or pn-CCD camera. This camera has six operating modes, spatially as well as time resolved. The main objective of this project is to refine the Burst mode energy correction in order to align the measured energy spectra observed in the Burst mode with the spectra taken in the Full Frame mode. An observation of the line-rich supernova remnant called Cassiopeia A is used to evaluate the line positions in each mode such that the energy correction function used for the alignment can be modified accordingly. The analysis further treats the application of the correction on a source with a continuous spectrum, the Crab nebula. Discussion shows how to reduce eventual residuals in the Crab spectrum by modifying the correction function while keeping the alignment of the Cas-A spectra. The final product is an update of the corresponding published calibration file.
24

Atomic Diffusion in Old Stars : Testing parameter degeneracies

Nordlander, Thomas January 2010 (has links)
The predicted primordial lithium abundance differs from observations of unevolved halo stars on the Spite plateau by a factor two to three. Surface depletion due to atomic diffusion has been suggested as a cause of this so-called cosmological lithium problem. Evolutionary abundance trends indicative of atomic diffusion have previously been identified in the metal-poor globular cluster NGC 6397 ([Fe/H] = -2), with stellar parameters deduced spectroscopically in a self-consistent manner. Abundances of five elements (Li, Mg, Ca, Ti, and Fe) were found to be in agreement with stellar structure models including the effects of atomic diffusion and a free-parameter description of turbulent mixing at the lowest efficiency compatible with the flatness of the Spite plateau. It is our aim to evaluate the interplay of modelling assumptions and theoretical predictions under various priors, e.g. the independent age determination using the white dwarf cooling sequence, and the high efficiency of turbulent mixing recently found compatible with halo field stars. We perform self-consistent spectroscopic abundance analyses at an expanded effective temperature scale inspired by results of new photometric calibrations from the infrared flux method. The resulting abundances are compared to predictions in a grid of theoretical isochrones, chosen in light of the priors for age and efficiency of turbulent mixing. We find that the observed abundance trends are not artefacts of the effective temperature scale, as it cannot be arbitrarily modified to flatten all trends. The inferred abundance trends seem to be in agreement with predictions for an age compatible with the white dwarf cooling sequence, and a limited range of weak turbulent mixing. The inferred initial lithium abundance of these stars is merely 30 % lower than the primordial abundance, discrepant at 1.5 standard deviations. Hence, a stellar solution to the cosmological lithium problem is still within reach.
25

X-ray Analysis of a Complete Sample of Giga-Hertz Peaked Spectrum Galaxies

Tengstrand, Olof January 2008 (has links)
<p>This thesis investigates the X-ray properties of the entire Stanghellini et al. (1998) complete sample of GHz Peaked Spectrum galaxies with redshift lower than 1. In total 19 sources are included mainly from observations made by the European space telescope, XMM-Newton. Out of these the analysis of seven "new" observations made between 2006 and 2008 are throughout described. Data from the new observations shows consistency with already analysed data. As a new result a tentative discovery of a bi-modal structure in the X-ray to radio luminosity ratio within the sample is presented.</p>
26

X-ray Analysis of a Complete Sample of Giga-Hertz Peaked Spectrum Galaxies

Tengstrand, Olof January 2008 (has links)
This thesis investigates the X-ray properties of the entire Stanghellini et al. (1998) complete sample of GHz Peaked Spectrum galaxies with redshift lower than 1. In total 19 sources are included mainly from observations made by the European space telescope, XMM-Newton. Out of these the analysis of seven "new" observations made between 2006 and 2008 are throughout described. Data from the new observations shows consistency with already analysed data. As a new result a tentative discovery of a bi-modal structure in the X-ray to radio luminosity ratio within the sample is presented.
27

Super Star Clusters in Blue Compact Galaxies : Evidence for a near-infrared flux excess and properties of the starburst phase

Adamo, Angela January 2011 (has links)
Luminous Blue compact galaxies (BCGs) are metal-poor actively star-forming systems, characterised by bright ultraviolet and blue luminosities. Hubble Space Telescope high-resolution data have revealed that the luminous star-forming knots in these galaxies are composed of hundreds of young massive star clusters. In this work we present a systematic study of the star cluster populations in BCGs with important implications for the formation history of their host systems. The studied galaxies show recently increased star formation rates and a high fraction of massive clusters, probably as a result of minor/major merger events. The age distributions have a peak of cluster formation at only 3 - 4 Myr, unveiling a unique sample of clusters still partially embedded. A considerable fraction of clusters (30 - 50 %), mainly younger than 10 Myr, shows an observed flux excess between 0.8 and 2.2 μm. This so-called near-infrared (NIR) excess is impossible to reproduce even with the most recent spectral synthesis models (that include a self-consistent treatment of the photoionized gas). The origin of the NIR excess, which still remains unexplained, challenges our understanding of the cluster formation process under extreme conditions. The results achieved in this work have produced important insights into the cluster formation process in BCGs. We suggest that the BCG environment has most likely favoured the compression and collapse of giant molecular clouds into compact massive star clusters. The cluster formation efficiency (i.e., the fraction of star formation happening in star clusters) in BCGs is higher than the reported 8 - 10 %, for quiescent spirals and local star-forming galaxies. Luminous BCGs have a cluster formation efficiency comparable to luminous infrared galaxies and spiral starburst nuclei (the averaged value is  about 30 %), suggesting an important role of the merger event in the cluster formation. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 5: Manuscript. Paper 6: Manuscript.
28

Regolith Properties of Mercury Derived from Observations and Modelling

Warell, Johan January 2003 (has links)
<p>The properties of Mercury's regolith have been investigated at optical and near-infrared wavelengths with high-resolution imaging, photometric, and spectroscopic observations with the Swedish Vacuum Solar Telescope and the Nordic Optical Telescope. </p><p>A new global optical map at a spatial resolution of 200 km shows that the well known (from Mariner 10) and poorly known hemispheres are indistinguishable with respect to the distribution, number density, and morphological parameters of bright albedo features. This indicates a globally uniform recent (<3 Gyr) geologic evolution, a compositionally very homogeneous surface and the absence of a lunar-like mare–terrae albedo dichotomy.</p><p>It is found that the spectrum of Mercury is linear, strongly sloped, lacks detectable absorption features and displays a unique relation between the continuum slope and photometric geometry. Mercury has a photometrically smoother surface than the average near-side Moon, and is 10–15% fainter and 50% more back scattering in the V-band. Unlike the case for the Moon, the average single-particle backscattering anisotropy increases with wavelength.</p><p>Intimate regolith mixing models are used to determine a probable surface composition of predominantly Ca-rich labradorite plagioclase feldspar with minor low-iron enstatitic orthopyroxene, and rule out high-iron pyroxenes or olivines as other than insignificant constituents. Abundances of FeO ~1.2 wt%, TiO<sub>2</sub> ~0 wt%, and submicroscopic metallic iron ~0.1–0.3 wt% are found for the average surface. This implies an optically active grain size of 15–30 μm that is a factor of two smaller than for the Moon.</p><p>A numerical integration study shows that hermeocentric orbits with semi-major axes <30 mercurian radii for elliptic retrograde, and circular prograde, object are stable for durations in excess of 4.5 Myr. The weak gravitational scattering effect of Mercury indicates that re-impacting particles may have been important for the early evolution of its crust.</p>
29

Thermophysical Modelling and Mechanical Stability of Cometary Nuclei

Davidsson, Björn January 2003 (has links)
<p>Comets are the most primordial and least evolved bodies in the Solar System. As such, they are unique sources of information regarding the early history of the Solar System. However, little is known about cometary nuclei since they are very difficult to observe due to the obscuring coma. Indirect methods are therefore often used to extract knowledge about nucleus parameters such as size, shape, density, material strength, and rotational properties. For example, tidal and non-tidal splitting of cometary nuclei can provide important information about nuclear densities and material strengths, but only if the criteria for mechanical stability are well known. Masses and densities of cometary nuclei can also be obtained by studying orbital modifications due to non-gravitational forces, but only if the thermophysics of comets can be modelled accurately. </p><p>A detailed investigation is made regarding the mechanical stability of small Solar System bodies. New expressions for the Roche distance are derived, as functions of the size, shape, density, material strength, rotational period, and spin axis orientation of a body. The critical rotational period for centrifugal breakup in free space is also considered, and the resulting formulae are applied to comets for which the size, shape and rotational period have been estimated observationally, in order to place constraints on their densities and material strengths. </p><p>A new thermophysical model of cometary nuclei is developed, focusing on two rarely studied features - layer absorption of solar energy, and parallel modelling of the nucleus and innermost coma. Sophisticated modelling of radiative transfer processes and the kinetics of gas in thermodynamic non-equilibrium form the basis for this work. The new model is applied to Comet 19P/Borrelly, and its density is estimated by reproducing the non-gravitational changes of its orbit.</p>
30

Magnetic and Chemical Structures in Stellar Atmospheres

Kochukhov, Oleg January 2003 (has links)
<p>We present an investigation of the magnetic field geometries and inhomogeneous distribution of chemical elements in the atmospheres of peculiar A and B stars. Our study combines high-quality spectroscopic and spectropolarimetric stellar observations with the development and application of novel techniques for theoretical interpretation of the shapes and variability of stellar line profiles. In particular, we extend the method of Doppler imaging to the analysis of spectra in the four Stokes parameters, making it possible to derive detailed and reliable stellar magnetic maps simultaneously with the imaging chemical inhomogeneities.</p><p>The magnetic Doppler imaging is applied to study of magnetic topologies and distributions of chemical elements in the peculiar stars α<sup>2</sup> CVn and 53 Cam. We found that the magnetic field geometry of 53 Cam is considerably more complex than a low-order multipolar topology, commonly assumed for magnetic A and B stars. Our Doppler imaging analysis also led to a discovery and study of spots of enhanced mercury abundance in the atmosphere of α And, a star where the presence of a global magnetic field is unlikely.</p><p>The ESO 3.6-m telescope is used to collect unique, very high spectral- and time-resolution observations of rapidly oscillating peculiar A (roAp) stars and to reveal line profile variations due to stellar pulsations. We present a detailed characterization of the spectroscopic pulsational behaviour and demonstrate a remarkable diversity of pulsations in different spectral lines. The outstanding variability of the lines of rare-earth elements is used to study propagation of pulsation waves through the stellar atmospheres and identify pulsation modes. This analysis led to a discovery of a non-axisymmetric character of pulsations in roAp stars.</p><p>Our study of chemical stratification in the atmosphere of the roAp star γ Equ provides a compelling evidence for significant variation of the chemical composition with depth. We find a combined effect of extreme chemical anomalies and a growth of pulsation amplitude in the outermost atmospheric layers to be the most likely origin of the high-amplitude pulsational variations of the lines of rare-earth elements.</p><p>Observations of cool magnetic CP stars are obtained with the ESO Very Large Telescope and are used for empirical investigation of the anomalies in the atmospheric temperature structure. We show that the core-wing anomaly of the hydrogen Balmer lines observed in some cool CP stars can be attributed to a hot layer at an intermediate atmospheric depth.</p>

Page generated in 0.3258 seconds