• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Swedish Rescue Service Agency’s implementation process : -A case study of SRSA:s implementation of public aid policy in international operations of 2006

Qadiri, Ali January 2008 (has links)
No description available.
2

Atomic Diffusion in Old Stars : Testing parameter degeneracies

Nordlander, Thomas January 2010 (has links)
The predicted primordial lithium abundance differs from observations of unevolved halo stars on the Spite plateau by a factor two to three. Surface depletion due to atomic diffusion has been suggested as a cause of this so-called cosmological lithium problem. Evolutionary abundance trends indicative of atomic diffusion have previously been identified in the metal-poor globular cluster NGC 6397 ([Fe/H] = -2), with stellar parameters deduced spectroscopically in a self-consistent manner. Abundances of five elements (Li, Mg, Ca, Ti, and Fe) were found to be in agreement with stellar structure models including the effects of atomic diffusion and a free-parameter description of turbulent mixing at the lowest efficiency compatible with the flatness of the Spite plateau. It is our aim to evaluate the interplay of modelling assumptions and theoretical predictions under various priors, e.g. the independent age determination using the white dwarf cooling sequence, and the high efficiency of turbulent mixing recently found compatible with halo field stars. We perform self-consistent spectroscopic abundance analyses at an expanded effective temperature scale inspired by results of new photometric calibrations from the infrared flux method. The resulting abundances are compared to predictions in a grid of theoretical isochrones, chosen in light of the priors for age and efficiency of turbulent mixing. We find that the observed abundance trends are not artefacts of the effective temperature scale, as it cannot be arbitrarily modified to flatten all trends. The inferred abundance trends seem to be in agreement with predictions for an age compatible with the white dwarf cooling sequence, and a limited range of weak turbulent mixing. The inferred initial lithium abundance of these stars is merely 30 % lower than the primordial abundance, discrepant at 1.5 standard deviations. Hence, a stellar solution to the cosmological lithium problem is still within reach.
3

Dust driven winds of cool giant stars : dependency on grain size

Jennerholm Hammar, Filip January 2011 (has links)
Aim. In this project, theoretical models of dust driven winds of asymptotic giant branch (AGB) stars with effective temperatures within a range of 2400 − 3200 [K] and relative carbon-to-oxygen abundance C/O > 1 are studied. The aim is to understand if and how a detailed description of the grain size in winds of carbon rich AGB stars affects the wind formation and wind driving processes. Method. The computations were performed with a well tested FORTRAN code by calculating a grid of 60 models with different stellar parameters using grain size-dependent opacities. The results were then compared with models where the small particle approximation (SPA) had been used. Conclusions. The results indicate a certain dependency on grain size of the wind properties. The results from the computations of the majority of the models show no significant diferences however, especially not for the mass loss rates. Thus earlier computations performed using the SPA need not necessarily to be rejected.
4

Searches for Particle Dark Matter : Dark stars, dark galaxies, dark halos and global supersymmetric fits

Scott, Pat January 2010 (has links)
The identity of dark matter is one of the key outstanding problems in both particle and astrophysics. In this thesis, I describe a number of complementary searches for particle dark matter. I discuss how the impact of dark matter on stars can constrain its interaction with nuclei, focussing on main sequence stars close to the Galactic Centre, and on the first stars as seen through the upcoming James Webb Space Telescope. The mass and annihilation cross-section of dark matter particles can be probed with searches for gamma rays produced in astronomical targets. Dwarf galaxies and ultracompact, primordially-produced dark matter minihalos turn out to be especially promising in this respect. I illustrate how the results of these searches can be combined with constraints from accelerators and cosmology to produce a single global fit to all available data. Global fits in supersymmetry turn out to be quite technically demanding, even with the simplest predictive models and the addition of complementary data from a bevy of astronomical and terrestrial experiments; I show how genetic algorithms can help in overcoming these challenges. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted.

Page generated in 0.1588 seconds