Spelling suggestions: "subject:"asymmetric anda symmetric interaction"" "subject:"asymmetric ando symmetric interaction""
1 |
Står til tjeneste : Emosjonelt arbeid i tjenestemøtet / At your service : Emotional labour in service encountersFalch, Wenche January 2010 (has links)
This thesis is about personal assistants, and how they experience their work. The aim of this study is twofold: First to examine the experiences of personal assistants and their work. Second, to examine the assistant’s experiences of feelings at work and how these feelings are managed from an emotionsociological perspective. The empirical base of the research builds upon interviews with personal assistants with a focus on the individual and subjective experiences of the work. The data shows that the assistants concentrate on the emotional aspects of their job. When asked to describe their work situation, the interviewees were preoccupied with the regulation of their own feelings in the relation to the employer. The analysis has an abductive approach, in which empirical sensitivity, interpretation and theory are combined. In terms of results, this study shows that the majority of assistants experience themselves as a friend to the client and they experience the job as meaningful. However, here lies the duplicity of the situation because being a friend to the client, who is also the supervisor, can lead to problems when setting the boundaries for intimacy. The study also shows relatively stable structures in relation to the dimensions of power and subordination, where the assistants’ experience themselves as subordinates and the client as superior. At the same time that the assistants finds purpose in their job there are also challenges connected to being subordinate in a face-to-face situation. It is important to the assistants to have control over feelings and outward expressions. Feelings of subordination seem to be linked to the status and power the assistants have in society at large. Thus, how vulnerable they are in the subordinate position depends on age, gender and education. Another effect described by the assistants is a kind of emotional dissonance, where their own feelings are in conflict with how they wish to act in the social interaction with the clients. In the final chapter the concepts of asymmetric and symmetric interaction are used to understand different types of feelings the assistants’ experience. The asymmetric interaction can trigger feelings of irritation, frustration and anger which are energy draining. Symmetric interaction often seems to lead to feelings of contentment, joy and purpose, which are uplifting and energy renewing. As a concluding remark emotional labour seems to be a significant part of the assistants work. By using an emotionsociological perspective it has been possible to gain knowledge about different aspects of the personal assistants’ emotional labour.
|
2 |
The role of different modes of interactions among neighbouring plants in driving population dynamicsLin, Yue 18 February 2013 (has links) (PDF)
The general aim of my dissertation was to investigate the role of plant interactions in driving population dynamics. Both theoretical and empirical approaches were employed. All my studies were conducted on the basis of metabolic scaling theory (MST), because the complex, spatially and temporally varying structures and dynamics of ecological systems are considered to be largely consequences of biological metabolism. However, MST did not consider the important role of plant interactions and was found to be invalid in some environmental conditions. Integrating the effects of plant interactions and environmental conditions into MST may be essential for reconciling MST with observed variations in nature. Such integration will improve the development of theory, and will help us to understand the relationship between individual level process and system level dynamics.
As a first step, I derived a general ontogenetic growth model for plants which is based on energy conservation and physiological processes of individual plant. Taking the mechanistic growth model as basis, I developed three individual-based models (IBMs) to investigate different topics related to plant population dynamics:
1. I investigated the role of different modes of competition in altering the prediction of MST on plant self-thinning trajectories. A spatially-explicit individual-based zone-of-influence (ZOI) model was developed to investigate the hypothesis that MST may be compatible with the observed variation in plant self-thinning trajectories if different modes of competition and different resource availabilities are considered. The simulation results supported my hypothesis that (i) symmetric competition (e.g. belowground competition) will lead to significantly shallower self-thinning trajectories than asymmetric competition as predicted by MST; and (ii) individual-level metabolic processes can predict population-level patterns when surviving plants are barely affected by local competition, which is more likely to be in the case of asymmetric competition.
2. Recent studies implied that not only plant interactions but also the plastic biomass allocation to roots or shoots of plants may affect mass-density relationship. To investigate the relative roles of competition and plastic biomass allocation in altering the mass-density relationship of plant population, a two-layer ZOI model was used which considers allometric biomass allocation to shoots or roots and represents both above- and belowground competition simultaneously via independent ZOIs. In addition, I also performed greenhouse experiment to evaluate the model predictions. Both theoretical model and experiment demonstrated that: plants are able to adjust their biomass allocation in response to environmental factors, and such adaptive behaviours of individual plants, however, can alter the relative importance of above- or belowground competition, thereby affecting plant mass-density relationships at the population level. Invalid predictions of MST are likely to occur where competition occurs belowground (symmetric) rather than aboveground (asymmetric).
3. I introduced the new concept of modes of facilitation, i.e. symmetric versus asymmetric facilitation, and developed an individual-based model to explore how the interplay between different modes of competition and facilitation changes spatial pattern formation in plant populations. The study shows that facilitation by itself can play an important role in promoting plant aggregation independent of other ecological factors (e.g. seed dispersal, recruitment, and environmental heterogeneity).
In the last part of my study, I went from population level to community level and explored the possibility of combining MST and unified neutral theory of biodiversity (UNT). The analysis of extensive data confirms that most plant populations examined are nearly neutral in the sense of demographic trade-offs, which can mostly be explained by a simple allometric scaling rule based on MST. This demographic equivalence regarding birth-death trade-offs between different species and functional groups is consistent with the assumptions of neutral theory but allows functional differences between species. My initial study reconciles the debate about whether niche or neutral mechanisms structure natural communities: the real question should be when and why one of these factors dominates.
A synthesis of existing theories will strengthen future ecology in theory and application. All the studies presented in my dissertation showed that the approaches of individual-based and pattern-oriented modelling are promising to achieve the synthesis.
|
3 |
The role of different modes of interactions among neighbouring plants in driving population dynamicsLin, Yue 22 January 2013 (has links)
The general aim of my dissertation was to investigate the role of plant interactions in driving population dynamics. Both theoretical and empirical approaches were employed. All my studies were conducted on the basis of metabolic scaling theory (MST), because the complex, spatially and temporally varying structures and dynamics of ecological systems are considered to be largely consequences of biological metabolism. However, MST did not consider the important role of plant interactions and was found to be invalid in some environmental conditions. Integrating the effects of plant interactions and environmental conditions into MST may be essential for reconciling MST with observed variations in nature. Such integration will improve the development of theory, and will help us to understand the relationship between individual level process and system level dynamics.
As a first step, I derived a general ontogenetic growth model for plants which is based on energy conservation and physiological processes of individual plant. Taking the mechanistic growth model as basis, I developed three individual-based models (IBMs) to investigate different topics related to plant population dynamics:
1. I investigated the role of different modes of competition in altering the prediction of MST on plant self-thinning trajectories. A spatially-explicit individual-based zone-of-influence (ZOI) model was developed to investigate the hypothesis that MST may be compatible with the observed variation in plant self-thinning trajectories if different modes of competition and different resource availabilities are considered. The simulation results supported my hypothesis that (i) symmetric competition (e.g. belowground competition) will lead to significantly shallower self-thinning trajectories than asymmetric competition as predicted by MST; and (ii) individual-level metabolic processes can predict population-level patterns when surviving plants are barely affected by local competition, which is more likely to be in the case of asymmetric competition.
2. Recent studies implied that not only plant interactions but also the plastic biomass allocation to roots or shoots of plants may affect mass-density relationship. To investigate the relative roles of competition and plastic biomass allocation in altering the mass-density relationship of plant population, a two-layer ZOI model was used which considers allometric biomass allocation to shoots or roots and represents both above- and belowground competition simultaneously via independent ZOIs. In addition, I also performed greenhouse experiment to evaluate the model predictions. Both theoretical model and experiment demonstrated that: plants are able to adjust their biomass allocation in response to environmental factors, and such adaptive behaviours of individual plants, however, can alter the relative importance of above- or belowground competition, thereby affecting plant mass-density relationships at the population level. Invalid predictions of MST are likely to occur where competition occurs belowground (symmetric) rather than aboveground (asymmetric).
3. I introduced the new concept of modes of facilitation, i.e. symmetric versus asymmetric facilitation, and developed an individual-based model to explore how the interplay between different modes of competition and facilitation changes spatial pattern formation in plant populations. The study shows that facilitation by itself can play an important role in promoting plant aggregation independent of other ecological factors (e.g. seed dispersal, recruitment, and environmental heterogeneity).
In the last part of my study, I went from population level to community level and explored the possibility of combining MST and unified neutral theory of biodiversity (UNT). The analysis of extensive data confirms that most plant populations examined are nearly neutral in the sense of demographic trade-offs, which can mostly be explained by a simple allometric scaling rule based on MST. This demographic equivalence regarding birth-death trade-offs between different species and functional groups is consistent with the assumptions of neutral theory but allows functional differences between species. My initial study reconciles the debate about whether niche or neutral mechanisms structure natural communities: the real question should be when and why one of these factors dominates.
A synthesis of existing theories will strengthen future ecology in theory and application. All the studies presented in my dissertation showed that the approaches of individual-based and pattern-oriented modelling are promising to achieve the synthesis.
|
Page generated in 0.1827 seconds