• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and Design of Paralleled Three-Phase Voltage Source Converters with Interleaving

Zhang, Di 21 May 2010 (has links)
Three-phase voltage source converters(VSCs) have become the converter of choice in many ac medium and high power applications due to their many advantages, including low harmonics, high power factor, and high efficiency. Modular VSCs have also been a popular choice as building blocks to achieve even higher power, primarily through converter paralleling. In addition to high power ratings, paralleling converters can also provide system redundancy through the so-called (N+1) configuration for improved availability, as well as allow easy implementation of converter power management. Interleaving can further improve the benefit of paralleling VSCs by reducing system harmonic currents, which potentially can increase system power density. There are many challenges to implement interleaving in paralleled VSCs system due to the complicated relationships in a three-phase power converter system. In addition, to maximize the benefit of interleaving, current knowledge of symmetric interleaving is not enough. More insightful understanding of this PWM technology is necessary before implement interleaving in a real paralleled VSCs system. In this dissertation, a systematic methodology to analyze and design a paralleled three-phase voltage source converters with interleaving is developed. All the analysis and proposed control methods are investigated with the goal of maximizing the benefit of interleaving based on system requirement. The dissertation is divided into five sections. Firstly, a complete analysis studying the impact of interleaving on harmonic currents in ac and dc side passive components for paralleled VSCs is presented. The analysis performed considers the effects of modulation index, pulse-width-modulation (PWM) schemes, interleaving angle and displacement angle. Based on the analysis the method to optimize interleaving angle is proposed. Secondly, the control methods for the common mode (CM) circulating current of paralleled three-phase VSCs with discontinuous space-vector modulation (DPWM) and interleaving are proposed. With the control methods, DPWM and interleaving, which is a desirable combination, but not considered possible, can be implemented together. In addition, the total flux of integrated inter-phase inductor to limit circulating current can be minimized. Thirdly, a 15 kW three phase ac-dc rectifier is built with SiC devices. With the technologies presented in this dissertation, the specific power density can be pushed more than 2kW/lb. Fourthly, the converter system with low switching frequency is studied. Special issues such as beat phenomenon and system unbalance due to non-triplen carrier ratio is explained and solved by control methods. Other than that, an improved asymmetric space vector modulation is proposed, which can significantly reduce output current total harmonic distortion (THD) for single and interleaved VSCs system. Finally, the method to protect a system with paralleled VSCs under the occurrence of internal faults is studied. After the internal fault is detected and isolated, the paralleled VSCs system can continue work. So system reliability can be increased. / Ph. D.
2

Passive Component Weight Reduction for Three Phase Power Converters

Zhang, Xuning 30 April 2014 (has links)
Over the past ten years, there has been increased use of electronic power processing in alternative, sustainable, and distributed energy sources, as well as energy storage systems, transportation systems, and the power grid. Three-phase voltage source converters (VSCs) have become the converter of choice in many ac medium- and high-power applications due to their many advantages, such as high efficiency and fast response. For transportation applications, high power density is the key design target, since increasing power density can reduce fuel consumption and increase the total system efficiency. While power electronics devices have greatly improved the efficiency, overall performance and power density of power converters, using power electronic devices also introduces EMI issues to the system, which means filters are inevitable in those systems, and they make up a significant portion of the total system size and cost. Thus, designing for high power density for both power converters and passive components, especially filters, becomes the key issue for three-phase converters. This dissertation explores two different approaches to reducing the EMI filter size. One approach focuses on the EMI filters itself, including using advanced EMI filter structures to improve filter performance and modifying the EMI filter design method to avoid overdesign. The second approach focuses on reducing the EMI noise generated from the converter using a three-level and/or interleaving topology and changing the modulation and control methods to reduce the noise source and reduce the weight and size of the filters. This dissertation is divided into five chapters. Chapter 1 describes the motivations and objectives of this research. After an examination of the surveyed results from the literature, the challenges in this research area are addressed. Chapter 2 studies system-level EMI modeling and EMI filter design methods for voltage source converters. Filter-design-oriented EMI modeling methods are proposed to predict the EMI noise analytically. Based on these models, filter design procedures are improved to avoid overdesign using in-circuit attenuation (ICA) of the filters. The noise propagation path impedance is taken into consideration as part of a detailed discussion of the interaction between EMI filters, and the key design constraints of inductor implementation are presented. Based on the modeling, design and implementation methods, the impact of the switching frequency on EMI filter weight design is also examined. A two-level dc-fed motor drive system is used as an example, but the modeling and design methods can also be applied to other power converter systems. Chapter 3 presents the impact of the interleaving technique on reducing the system passive weight. Taking into consideration the system propagation path impedance, small-angle interleaving is studied, and an analytical calculation method is proposed to minimize the inductor value for interleaved systems. The design and integration of interphase inductors are also analyzed, and the analysis and design methods are verified on a 2 kW interleaved two-level (2L) motor drive system. Chapter 4 studies noise reduction techniques in multi-level converters. Nearest three space vector (NTSV) modulation, common-mode reduction (CMR) modulation, and common-mode elimination (CME) modulation are studied and compared in terms of EMI performance, neutral point voltage balancing, and semiconductor losses. In order to reduce the impact of dead time on CME modulation, the two solutions of improving CME modulation and compensating dead time are proposed. To verify the validity of the proposed methods for high-power applications, a 100 kW dc-fed motor drive system with EMI filters for both the AC and DC sides is designed, implemented and tested. This topology gains benefits from both interleaving and multilevel topologies, which can reduce the noise and filter size significantly. The trade-offs of system passive component design are discussed, and a detailed implementation method and real system full-power test results are presented to verify the validity of this study in higher-power converter systems. Finally, Chapter 5 summarizes the contributions of this dissertation and discusses some potential improvements for future work. / Ph. D.

Page generated in 0.1367 seconds