• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impedance Mismatching Based Design of Passive and Active EMI Filters for Power Converters

Narayanasamy, Balaji 11 August 2016 (has links)
No description available.
2

Modular Approach for Characterizing and Modeling Conducted EMI Emissions in Power Converters

Liu, Qian 22 November 2005 (has links)
With the development of power electronics, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) issues have become more and more important for both power converter designers and customers. This dissertation studies EMI noise emission characterization and modeling in power converters. A modular-terminal-behavioral (MTB) equivalent EMI noise source modeling approach is proposed. This work is the first to systematically develop a 3-terminal EMI noise source model for a switching phase-leg device module. Each module is modeled as pairs of equivalent noise current sources and source impedances. Although the proposed MTB modeling approach applies the linear circuit theory to a semiconductor switching device, which exhibits nonlinear behavior during switching transients, the analysis and experiments show that the nonlinearity has negligible practical effect on the modeling methodology. The validation range of the modeling methodology has been analyzed. One of the differences between the proposed MTB model and the other state-of-the-art models is that the MTB model characterizes and predicts the CM and DM noise simultaneously. The inseparable high-frequency CM and DM noise characteristics contributed by the source impedance and propagation path are analyzed. A comprehensive evaluation of different EMI noise source modeling approaches according to the criteria of accuracy, feasibility and generality has been presented. Results show that the MTB modeling approach is more accurate, feasible and general than other approaches. The modular and terminal characteristics of the MTB noise source model are verified in two more complicated cases. One example is the application of the MTB equivalent source model in a half-bridge AC converter with variable switching conditions. Although the MTB model is derived under a certain operating condition, the models under different conditions can be combined together to predict the EMI noise for the converter with variable switching conditions. Another example is the application of the MTB equivalent source model in multi-phase-leg converters. The EMI noise of a full-bridge converter is predicted based on the MTB equivalent source model of one phase-leg module. The implementation procedures and results for both applications are verified by the experiment. The applicability of the MTB model in different type of converters is discussed. Based on the MTB model, EMI noise management is explored. The parametric study based on the MTB model is demonstrated by selecting DC-link decoupling capacitors for voltage source converter (VSC). The EMI effect of a decoupling capacitor for a device s safe operation is analyzed, and this analysis shows the terminal characteristics of the MTB model. Both the EMI and voltage overshoot are predicted by the MTB model. A completed converter-level EMI model can be derived based on the noise source model and propagation path model. This model makes it possible to optimize the EMI filter design and study the EMI noise interactions between converters in a power conversion system. / Ph. D.
3

Passive Component Weight Reduction for Three Phase Power Converters

Zhang, Xuning 30 April 2014 (has links)
Over the past ten years, there has been increased use of electronic power processing in alternative, sustainable, and distributed energy sources, as well as energy storage systems, transportation systems, and the power grid. Three-phase voltage source converters (VSCs) have become the converter of choice in many ac medium- and high-power applications due to their many advantages, such as high efficiency and fast response. For transportation applications, high power density is the key design target, since increasing power density can reduce fuel consumption and increase the total system efficiency. While power electronics devices have greatly improved the efficiency, overall performance and power density of power converters, using power electronic devices also introduces EMI issues to the system, which means filters are inevitable in those systems, and they make up a significant portion of the total system size and cost. Thus, designing for high power density for both power converters and passive components, especially filters, becomes the key issue for three-phase converters. This dissertation explores two different approaches to reducing the EMI filter size. One approach focuses on the EMI filters itself, including using advanced EMI filter structures to improve filter performance and modifying the EMI filter design method to avoid overdesign. The second approach focuses on reducing the EMI noise generated from the converter using a three-level and/or interleaving topology and changing the modulation and control methods to reduce the noise source and reduce the weight and size of the filters. This dissertation is divided into five chapters. Chapter 1 describes the motivations and objectives of this research. After an examination of the surveyed results from the literature, the challenges in this research area are addressed. Chapter 2 studies system-level EMI modeling and EMI filter design methods for voltage source converters. Filter-design-oriented EMI modeling methods are proposed to predict the EMI noise analytically. Based on these models, filter design procedures are improved to avoid overdesign using in-circuit attenuation (ICA) of the filters. The noise propagation path impedance is taken into consideration as part of a detailed discussion of the interaction between EMI filters, and the key design constraints of inductor implementation are presented. Based on the modeling, design and implementation methods, the impact of the switching frequency on EMI filter weight design is also examined. A two-level dc-fed motor drive system is used as an example, but the modeling and design methods can also be applied to other power converter systems. Chapter 3 presents the impact of the interleaving technique on reducing the system passive weight. Taking into consideration the system propagation path impedance, small-angle interleaving is studied, and an analytical calculation method is proposed to minimize the inductor value for interleaved systems. The design and integration of interphase inductors are also analyzed, and the analysis and design methods are verified on a 2 kW interleaved two-level (2L) motor drive system. Chapter 4 studies noise reduction techniques in multi-level converters. Nearest three space vector (NTSV) modulation, common-mode reduction (CMR) modulation, and common-mode elimination (CME) modulation are studied and compared in terms of EMI performance, neutral point voltage balancing, and semiconductor losses. In order to reduce the impact of dead time on CME modulation, the two solutions of improving CME modulation and compensating dead time are proposed. To verify the validity of the proposed methods for high-power applications, a 100 kW dc-fed motor drive system with EMI filters for both the AC and DC sides is designed, implemented and tested. This topology gains benefits from both interleaving and multilevel topologies, which can reduce the noise and filter size significantly. The trade-offs of system passive component design are discussed, and a detailed implementation method and real system full-power test results are presented to verify the validity of this study in higher-power converter systems. Finally, Chapter 5 summarizes the contributions of this dissertation and discusses some potential improvements for future work. / Ph. D.

Page generated in 0.0849 seconds