Spelling suggestions: "subject:"asymmetric membranes"" "subject:"esymmetric membranes""
1 |
An Investigation of Pore Collapse in Asymmetric Polysulfone MembranesSubrahmanyan, Sumitra 12 September 2003 (has links)
Porous polysulfone membranes prepared by phase inversion can be tailored to suit filtration requirements by the choice of solvent and coagulant. In the current research polysulfone membranes were prepared by inverting a solution in N-methyl pyrrolidinone (NMP) in isopropanol to form uniform sized pores. Phase inversion resulted in the formation of an asymmetric membrane. The membranes have a characteristic "skin" which is supported by a highly porous substructure. Water-wet membranes experience capillary force during water evaporation. Since the modulus of the membranes is lower than the capillary force, the membrane walls shrink and thicken giving rise to a condensed structure.
The "skin" regulates permeation through the membranes which is essential for filtration. A change in the pore structure of the skin alters the permeability. The current research investigates the influence of amine plasma treatments on the surface pore structure of polysulfone membranes. The permeation of a rhodamine dye through the plasma treated membranes and through non-plasma treated membranes is used to examine the influence of the plasma treatment. Furthermore, the influence of plasma treatment on the loss of water from the membranes leading to pore collapse is also explored.
The study revealed that a plasma ablates the skin, increasing the permeation. An ammonia plasma treatment produced more etching, and hence increased permeation compared to permeation for an aniline plasma-treated membrane. A one-minute aniline plasma treatment only caused a moderate increase in permeation. Plasma treatments introduced significant surface modification by the introduction of new functionalities. However, permeation was not influenced by the surface modification.
Water trapped in the pores is essential to maintain the pore structure of the membrane. The surface treatment dictates the pore size and therefore, the convection allowing water evaporation, leading to pore collapse. Heat treating also increases the rate of water removal. Using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) the role of heat and surface treatments on the extent of pore collapse was investigated. The ammonia plasma treated samples showed maximum water loss and the control samples showed a minimum loss of water when stored at room temperature. All the samples stored at 90 °C exhibited equivalent water loss. Water loss was not affected by the plasma treatments. / Ph. D.
|
2 |
Mixed Matrix Dual Layer Hollow Fiber Membranes For Natural Gas SeparationHusain, Shabbir 10 July 2006 (has links)
Mixed matrix membranes offer an attractive route to the development of high performance and efficiency membranes required for demanding gas separations. Such membranes combine the advantageous processing characteristics of polymers with the excellent separation productivity and efficiency of molecular sieving materials. This research explores the development of mixed matrix membranes, namely in the form of asymmetric hollow fiber membranes using zeolites as the molecular sieving phase and commercially available high performance polymers as the continuous matrix.
Lack of adhesion between the typically hydrophobic polymer and the hydrophilic native zeolite surface is a major hurdle impeding the development of mixed matrix membranes. Silane coupling agents have been used successfully to graft polymer chains to the surface of the zeolite to increase compatibility with the bulk polymer in dense films. However, transitioning from a dense film to an asymmetric structure typically involves significant processing changes, the most important among them being the use of phase separation to form the asymmetric porous structure. During the phase separation, it is believed that hydrophilic sieves can act as nucleating agents for the hydrophilic polymer lean phase. Such nucleation tendencies are believed to lead to the formation of gaps between the polymer and sieve resulting in poor mixed matrix performance.
This research focuses on defining procedures and parameters to form successful mixed matrix hollow fiber membranes. The first part of this dissertation describes dope mixing procedures and unsuccessful results obtained using a silane coupling agent to enhance polymer-zeolite adhesion. The next section follows the development of a highly successful surface modification technique, discovered by the author, employing the use of a Grignard reagent. As a test case, two zeolites of different silicon-to-aluminum ratios are successfully modified and used to develop mixed matrix membranes with greatly increased gas separation efficiencies. The broad applicability of the surface treatment is also demonstrated by the successful incorporation of the modified zeolites in a second polymer matrix. The final section of the work describes the novel occurrence of large defects (macrovoids) caused by the presence of large zeolite particles proposing a particle size effect in the formation of such defects.
|
3 |
Process Analysis of Asymmetric Hollow Fiber Permeators, Unsteady State Permeation and Membrane-Amine Hybrid Systems for Gas SeparationsKundu, Prodip January 2013 (has links)
The global market for membrane separation technologies is forecast to reach $16 billion by the year 2017 due to wide adoption of the membrane technology across various end-use markets. With the growth in demand for high quality products, stringent regulations, environmental concerns, and exhausting natural resources, membrane separation technologies are forecast to witness significant growth over the long term (Global Industry Analysts Inc., 2011). The future of membrane technology promises to be equally exciting as new membrane materials, processes and innovations make their way to the marketplace. The current trend in membrane gas separation industry is, however, to develop robust membranes, which exhibit superior separation performance, and are reliable and durable for particular applications. Process simulation allows the investigation of operating and design variables in the process, and in new process configurations. An optimal operating condition and/or process configuration could possibly yield a better separation performance as well as cost savings. Moreover, with the development of new process concepts, new membrane applications will emerge.
The thesis addresses developing models that can be used to help in the design and operation of CO2 capture processes. A mathematical model for the dynamic performance of gas separation with high flux, asymmetric hollow fiber membranes was developed considering the permeate pressure build-up inside the fiber bore and cross flow pattern with respect to the membrane skin. The solution technique is advantageous since it requires minimal computational effort and provides improved solution stability. The model predictions and the robustness of the numerical technique were validated with experimental data for several membrane systems with different flow configurations. The model and solution technique were applied to investigate the performance of several membrane module configurations for air separation and methane recovery from biogas (landfill gas or digester gas). Recycle ratio plays a crucial role, and optimum recycle ratios vital for the retentate recycle to permeate and permeate recycle to feed operation were found. From the concept of two recycle operations, complexities involved in the design and operation of continuous membrane column were simplified. Membrane permselectivity required for a targeted separation to produce pipeline quality natural gas by methane-selective or nitrogen-selective membranes was calculated. The study demonstrates that the new solution technique can conveniently handle the high-flux hollow fiber membrane problems with different module configurations.
A section of the study was aimed at rectifying some commonly believed perceptions about pressure build-up in hollow fiber membranes. It is a general intuition that operating at higher pressures permeates more gases, and therefore sometimes the membrane module is tested or characterized at lower pressures to save gas consumption. It is also perceived that higher pressure build-up occurs at higher feed pressures, and membrane performance deteriorates at higher feed pressures. The apparent and intrinsic permeances of H2 and N2 for asymmetric cellulose acetate-based hollow fiber membranes were evaluated from pure gas permeation experiments and numerical analysis, respectively. It was shown that though the pressure build-up increases as feed pressure increases, the effect of pressure build-up on membrane performance is actually minimized at higher feed pressures. Membrane performs close to its actual separation properties if it is operated at high feed pressures, under which conditions the effect of pressure build-up on the membrane performance is minimized. The pressure build-up effect was further investigated by calculating the average loss and percentage loss in the driving force due to pressure build-up, and it was found that percentage loss in driving force is less at high feed pressures than that at low feed pressures.
It is true that unsteady state cyclic permeation process can potentially compete with the most selective polymers available to date, both in terms selectivity and productivity. A novel process mode of gas separation by means of cyclic pressure-vacuum swings for feed pressurization and permeate evacuation using a single pump was evaluated for CO2 separation from flue gas. Unlike transient permeation processes reported in the literature which were based on the differences in sorption uptake rates or desorption falloff rates, this process was based on the selective permeability of the membrane for separations. The process was analyzed to elucidate the working principle, and a parametric study was carried out to evaluate the effects of design and operating parameters on the separation performance. It was shown that improved separation efficiency (i.e., product purity and throughput) better than that of conventional steady-state permeation could be obtained by means of pressure-vacuum swing permeation.
The effectiveness of membrane processes and feasibility of hybrid processes combining membrane permeation and conventional amine absorption process were investigated for post-combustion CO2 capture. Traditional MEA process uses a substantial amount of energy at the stripper reboiler when CO2 concentration increases. Several single stage and multi-stage membrane process configurations were simulated for a target design specification aiming at possible application in enhanced oil recovery. It was shown that membrane processes offer the lowest energy penalty for post-combustion CO2 capture and likely to expand as more and more CO2 selective membranes are developed. Membrane processes can save up to 20~45% energy compared to the stand-alone MEA capture processes. A comparison of energy perspective for the CO2 capture processes studied was drawn, and it was shown that the energy requirements of the hybrid processes are less than conventional MEA processes. The total energy penalty of the hybrid processes decreases as more and more CO2 is removed by the membranes.
|
4 |
Process Analysis of Asymmetric Hollow Fiber Permeators, Unsteady State Permeation and Membrane-Amine Hybrid Systems for Gas SeparationsKundu, Prodip January 2013 (has links)
The global market for membrane separation technologies is forecast to reach $16 billion by the year 2017 due to wide adoption of the membrane technology across various end-use markets. With the growth in demand for high quality products, stringent regulations, environmental concerns, and exhausting natural resources, membrane separation technologies are forecast to witness significant growth over the long term (Global Industry Analysts Inc., 2011). The future of membrane technology promises to be equally exciting as new membrane materials, processes and innovations make their way to the marketplace. The current trend in membrane gas separation industry is, however, to develop robust membranes, which exhibit superior separation performance, and are reliable and durable for particular applications. Process simulation allows the investigation of operating and design variables in the process, and in new process configurations. An optimal operating condition and/or process configuration could possibly yield a better separation performance as well as cost savings. Moreover, with the development of new process concepts, new membrane applications will emerge.
The thesis addresses developing models that can be used to help in the design and operation of CO2 capture processes. A mathematical model for the dynamic performance of gas separation with high flux, asymmetric hollow fiber membranes was developed considering the permeate pressure build-up inside the fiber bore and cross flow pattern with respect to the membrane skin. The solution technique is advantageous since it requires minimal computational effort and provides improved solution stability. The model predictions and the robustness of the numerical technique were validated with experimental data for several membrane systems with different flow configurations. The model and solution technique were applied to investigate the performance of several membrane module configurations for air separation and methane recovery from biogas (landfill gas or digester gas). Recycle ratio plays a crucial role, and optimum recycle ratios vital for the retentate recycle to permeate and permeate recycle to feed operation were found. From the concept of two recycle operations, complexities involved in the design and operation of continuous membrane column were simplified. Membrane permselectivity required for a targeted separation to produce pipeline quality natural gas by methane-selective or nitrogen-selective membranes was calculated. The study demonstrates that the new solution technique can conveniently handle the high-flux hollow fiber membrane problems with different module configurations.
A section of the study was aimed at rectifying some commonly believed perceptions about pressure build-up in hollow fiber membranes. It is a general intuition that operating at higher pressures permeates more gases, and therefore sometimes the membrane module is tested or characterized at lower pressures to save gas consumption. It is also perceived that higher pressure build-up occurs at higher feed pressures, and membrane performance deteriorates at higher feed pressures. The apparent and intrinsic permeances of H2 and N2 for asymmetric cellulose acetate-based hollow fiber membranes were evaluated from pure gas permeation experiments and numerical analysis, respectively. It was shown that though the pressure build-up increases as feed pressure increases, the effect of pressure build-up on membrane performance is actually minimized at higher feed pressures. Membrane performs close to its actual separation properties if it is operated at high feed pressures, under which conditions the effect of pressure build-up on the membrane performance is minimized. The pressure build-up effect was further investigated by calculating the average loss and percentage loss in the driving force due to pressure build-up, and it was found that percentage loss in driving force is less at high feed pressures than that at low feed pressures.
It is true that unsteady state cyclic permeation process can potentially compete with the most selective polymers available to date, both in terms selectivity and productivity. A novel process mode of gas separation by means of cyclic pressure-vacuum swings for feed pressurization and permeate evacuation using a single pump was evaluated for CO2 separation from flue gas. Unlike transient permeation processes reported in the literature which were based on the differences in sorption uptake rates or desorption falloff rates, this process was based on the selective permeability of the membrane for separations. The process was analyzed to elucidate the working principle, and a parametric study was carried out to evaluate the effects of design and operating parameters on the separation performance. It was shown that improved separation efficiency (i.e., product purity and throughput) better than that of conventional steady-state permeation could be obtained by means of pressure-vacuum swing permeation.
The effectiveness of membrane processes and feasibility of hybrid processes combining membrane permeation and conventional amine absorption process were investigated for post-combustion CO2 capture. Traditional MEA process uses a substantial amount of energy at the stripper reboiler when CO2 concentration increases. Several single stage and multi-stage membrane process configurations were simulated for a target design specification aiming at possible application in enhanced oil recovery. It was shown that membrane processes offer the lowest energy penalty for post-combustion CO2 capture and likely to expand as more and more CO2 selective membranes are developed. Membrane processes can save up to 20~45% energy compared to the stand-alone MEA capture processes. A comparison of energy perspective for the CO2 capture processes studied was drawn, and it was shown that the energy requirements of the hybrid processes are less than conventional MEA processes. The total energy penalty of the hybrid processes decreases as more and more CO2 is removed by the membranes.
|
5 |
Préparation et étude de Membranes Asymétriques Polyalcoxyétherimides (PEI) pour la séparation de composés organiques de l'eau / Preparation and evaluation of Asymmetric co-Polyetherimide Membranes (PEI) for the separation of organic compounds from waterElgendi, Ayman Taha 11 October 2010 (has links)
Le mémoire rapporte les travaux effectués pour l’élaboration de membranes asymétriques de type co-polyalcoxyéther-imide (PEI) afin d'obtenir des membranes polymères à haut flux, sélectives pour la séparation de molécules organiques à partir de mélanges aqueux par procédés membranaires. La séparation des mélanges liquides (i.e. toluène - heptane, eau - éthanol, soluté organique dilué en solution aqueuse) a été étudiée par pervaporation (PV) et par nanofiltration (NF) à l'aide de membranes PEI originales asymétriques comportant une peau dense autosupportée. Ces membranes ont été préparées dans des conditions expérimentales contrôlées à partir de solutions DMF-H2O de l'acide polyamique correspondant (APA) en relation avec le diagramme de phase ternaire ; après l’inversion de phase dans un bain d'eau, les membranes d’APA ont été cyclisées en imides par traitement thermique. Les propriétés physiques des membranes (IR, TGA) ont été caractérisées, et les morphologies correspondantes, enregistrées par SEM, ont été utilisées pour optimiser la préparation des membranes asymétriques pour améliorer les propriétés de séparation en ajustant l'épaisseur de la couche dense. Les performances obtenues en pervaporation et en nanofiltration ont été examinées à la lumière de l'influence de trois séries de paramètres, à savoir les paramètres d’élaboration des membranes (composition du collodion, température du bain d'inversion de phase), les conditions expérimentales de perméation (température, pression) et des propriétés moléculaires du soluté (masse molaire, rayon, polarité). Les résultats de pervaporation ont montré que des membranes asymétriques PEI à peau denses pouvaient bien être obtenues, donnant lieu à une sélectivité moléculaire en accord avec le modèle de solution-diffusion. Les résultats obtenus en NF pour des solutés organiques dilués dans l'eau (≈ 500 ppm) ont montré que le degré de rejet des solutés étaient fortement liés aux conditions d’élaboration des membranes PEI et des propriétés des solutés. Les valeurs de seuil de coupure moléculaire des membranes (MWCO) ont été déterminées avec une série de polyéthylène glycol (400 <MW (g/mole) < 6000) pour une pression appliquée allant jusqu'à 10 bar. Il a été montré que le seuil de coupure des membranes était compris entre 400 et 1000g/mol à 30°C. Il a également été constaté pour certaines membranes PEI que de grandes valeurs de flux de perméation associées à de bonnes sélectivités pouvaient être obtenues, conduisant à des performances intéressantes par rapport aux données de la littérature. Ainsi le développement de ces nouvelles membranes asymétriques copolyimides comprenant un bloc élastomère devrait permettre d’obtenir des membranes de hautes performances pour des applications dans les séparations liquide-liquide, en particulier pour les séparations de nanofiltration en milieu aqueux / The work aimed to prepare co-polyalkylether-imide (PEI) asymmetric membranes in order to get high flux water selective polymeric membranes suitable for the separation of organic molecules from aqueous mixtures by membrane processes. The separation of liquid mixtures (i.e. toluene – heptane, water – ethanol and low concentrated organic solute in aqueous solutions) was studied by pervaporation (PV) and by nanofiltration (NF) using homemade integrally skinned asymmetric PEI membranes. These membranes were prepared under controlled experimental conditions from DMF-H2O solutions of the corresponding polyamic acid (PAA) with respect to the ternary phase diagram; after the wet phase inversion in a water bath, the PAA membranes were imidized by thermal treatment. The membrane physical properties (IR, TGA) were characterized and the related morphologies, recorded by SEM, were used to optimize the asymmetric membrane preparation to improve the separation properties by tuning the thickness of the dense top layer. The performances of the pervaporation and nanofiltration separations were examined in the light of the influence of three sets of parameters, i.e. membrane elaboration parameters (dope composition, inversion bath temperature), experimental permeation conditions (temperature, applied pressure) and solute molecular properties (molecular weight, radius, polarity). The PV results showed that tight asymmetric PEI membranes could well be obtained, giving rise to a molecular selectivity in agreement with the solution-diffusion model. The NF results obtained with diluted organics in water (≈500ppm) have shown that the degree of rejection of the organic solutes was strongly linked to the PEI elaboration conditions and to the solute properties. The molecular cutoff values (MWCO) of the membranes were determined with a series of polyethyleneglycol (400 < Mw (g/mole) <6000) for an applied NF pressure up to 10 Bar; it was shown that the PEI membrane MWCO could be ranged between 400 and 1000g/mol at 30°C. It was also found with some PEI membranes that high permeation fluxes together with good separation selectivity could be obtained leading to interesting performances compared to literature data. Thus, it is expected that the development of these new asymmetric block copolyimide rubbery membranes might give rise to high performance membrane systems for applications in liquid-liquid separations, in particular in nanofiltration separations
|
6 |
Membranes via particle assisted wettingMarczewski, Dawid 24 July 2009 (has links) (PDF)
Spreading of mixtures of oil with suitable silica particles onto a water surface leads to the
formation of composite layers in which particles protrude at the top and at the bottom from the
oil. Solidification of the oil and removal of the particles give rise to porous membranes. Pore
widths and membrane thicknesses depend on particle sizes and usually are in the range of 70 –
80% of their diameters. Often freely suspended porous membranes are too fragile to operate them
in pressure filtration without supportive structure.
To improve mechanical stability of porous membranes, a mixture of silica particles with
an oil is spread onto a nonwoven fibrous support that was drenched with water. Solidification of
the oil and removal of particles yields porous membrane attached to the fibers of the support. Due
to inhomogeneous surface of the fabric, the membranes that are attached to it are corrugated.
To obtain flat supportive structures, glass beads with 75 μm in diameter are spread onto
the water surface with the oil. Solidification of the oil and then removal of particles gives rise to
porous membranes with pore diameters in micrometer range.
Another concept of improvement of mechanical stability is the preparation of asymmetric
membranes via spreading of a mixture of two sorts of particles with opposite surface properties
with the oil onto the water surface. After solidification of the oil and removal of particles, membranes
with pores width in the range from 30 – 50 nm are obtained.
Slow removal of silica particles from composite monolayer that floats on the water surface
gives rise to silica rings in intermediate stages of removal.
Mixed matrix membranes with embedded carbon molecular sieves are prepared in a similar
process as detailed above by using carbon particles instead of silica. Carbon molecular sieves
protrude at the top and bottom from the polymeric matrix. Theoretical prediction of permeability
and selectivity through these membranes are much higher than in membranes where particles are
smaller than the membrane thickness. / Spreitet man Mischungen eines Öls mit geeigneten Kieselgelpartikeln auf eine Wasseroberfläche,
führt dies zur Bildung gemischter Schichten, in denen die Partikel auf der Ober- und
Unterseite aus dem Öl herausragen. Härtet man das Öl aus und entfernt die Partikel, erhält man
poröse Membranen mit einheitlichen Poren. Dabei hängen die Porenweiten und Membrandicken
von der Partikelgröße ab und betragen üblicherweise 70 – 80 % von deren Durchmesser. Oft sind
freitragende poröse Membranen zu zerbrechlich um mit ihnen Druckfiltration ohne Stützstruktur
durchzuführen.
Um die mechanische Stabilität von porösen Membranen zu erhöhen spreitet man eine Mischung
aus Kieselgelpartikeln und einem Öl auf einem Vliesstoff, der mit Wasser getränkt ist.
Das Aushärten des Öls und die Entfernung der Partikel führt zu einer porösen Membran, die an
die Fasern der Stützstruktur angeheftet ist. Durch die inhomogene Oberfläche des Vliesgewebes
sind die daran angehefteten Membranen gewellt.
Um eine ebene Stützstruktur zu erhalten, werden Mischungen aus dem Öl und Glaskugeln
mit einem Durchmesser von 75 μm verwendet. Das Aushärten des Öls und die Entfernung der
Partikel führt zu ebenen porösen Membranen mit Porendurchmessern im Mikrometerbereich.
Ein weiteres Konzept, um die mechanische Stabilität zu erhöhen, ist die Herstellung asymmetrischer
Membranen mit Hilfe des Spreitens einer Mischung zweier Partikelsorten mit unterschiedlichen
Oberflächeneigenschaften mit dem Öl auf die Wasseroberfläche. Nach dem Aushärten
des Öls und der Entfernung der Partikel erhält man eine asymmetrische Membran mit kleinen
Porenweiten an der Oberseite und großen Porenweiten an der Unterseite.
Durch langsames Entfernen der Kieselgelpartikel aus der gemischten Schicht, die auf der
Wasseroberfläche schwimmt, kann man in einem Zwischenstadium Kieselgelringe erhalten.
Kompositmembranen (mixed matrix membranes) mit eingebetteten Kohlenstoffmolekularsieben
werden in einem gleichen Prozess wie oben beschrieben hergestellt, indem man Kohlenstoffpartikel
anstatt der Kieselgelpartikel verwendet. Die Kohlenstoffmolekularsiebe ragen auf
der Ober- und Unterseite aus der Polymermatrix heraus. Die theoretisch vorhersagten Durchlässigkeiten
und Selektivitäten solcher Membranen sind wesentlich höher als bei Membranen, in
denen die Partikel kleiner als der Membrandicke sind.
|
7 |
Développement d’un pansement à libération controlée d’une protéine spécifique anti-biofilm bactérien. Application aux plaies chroniques. / Development of a wound dressing for the release of a specific anti-biofilm protein. For chronic wound healingBou Haidar, Naila 11 December 2019 (has links)
Le biofilm bactérien constitue un obstacle majeur à la cicatrisation des plaies. Par ailleurs, il est responsable de l’émergence d’une résistance et d’une tolérance accrues aux antibiotiques. Par conséquent, le développement de systèmes de délivrance contrôlée d’un agent ciblant la structure du biofilm apparaît comme une approche thérapeutique alternative indispensable et urgente pour la prise en charge des plaies chroniques. A travers cette étude, nous avons développé des systèmes membranaires pour pansements libérant une protéine, la dispersine B (DB),capable de cibler de manière sélective la matrice du biofilm, en créant un microenvironnement délétère pour le biofilm bactérien. Pour ce faire, nous nous sommes intéressés aux membranes asymétriques (MAs) à base de polyesters biodégradables tels que le poly(3-hydroxybutyrate-co-4-hydroxybutyrate), le poly (butylène succinate-co-butylène adipate) (PBSA), et l’acide polylactique. En incorporant dans la solution de polymère des agents porogènes hydrophiles (APs), nous avons pu obtenir des MAs à porosité élevée, un réseau poreux interconnecté, perméables au dioxygène et à l’eau vapeur. En utilisant l’albumine de sérum bovin, nous avons pu montrer que la capacité de piégeage de la protéine et sa libération contrôlée à partir des MAs de PBSA était influencée par la structure de celles-ci et la présence d’APs résiduels. Les études in vitro ont montré une très grande efficacité anti-biofilm à la fois en inhibition et en dispersion (jusqu’à 80%). Les tests standards normalisés de cytotoxicité in vitro ont montré que les MAs de PBSA non chargées et chargées en DB répondaient aux critères de cytocompatibilité exigées pour une application de type pansement. / Bacterial biofilms are a major obstacle to the wound healing process. In addition, they are responsible for the emergence of resistance and tolerance to antibiotics. Hence, the development of controlled drug delivery systems targeting the bacterial biofilm appears as an urgent and essential alternative therapeutic approach for the effective management of chronic wound. In this work, we developed wound dressings in which a protein, dispersin B (DB), is released capable of selectively targeting the biofilm matrix, creating a deleterious microenvironment for the bacterial biofilm. To this end, we were interested in asymmetric membranes (AMs) from biodegradable polyesters such as the poly(3-hydroxybutyrate-co-4-hydroxybutyrate), the poly (butylene succinate-co-butylene adipate) (PBSA) and the polylactic acid. By the incorporation of hydrophilic porogen agents (PA), we were able to obtain AMs with a high level of porosity, exhibiting a porous interconnected network and oxygen and water vapor permeability. Using bovine serum albumin as a model protein, we demonstrated that protein loading and release from the PBSA AMs were affected by the membrane structure and the presence of residual PA. In vitro studies showed highest antibiofilm efficiency both in inhibition and dispersion (up to 80%). Normalized in vitro cytotoxicity standard assays revealed that unloaded and DB-loaded PBSA membranes met cytocompatibility criteria required for wound dressing applications.
|
8 |
Membranes via particle assisted wettingMarczewski, Dawid 05 June 2009 (has links)
Spreading of mixtures of oil with suitable silica particles onto a water surface leads to the
formation of composite layers in which particles protrude at the top and at the bottom from the
oil. Solidification of the oil and removal of the particles give rise to porous membranes. Pore
widths and membrane thicknesses depend on particle sizes and usually are in the range of 70 –
80% of their diameters. Often freely suspended porous membranes are too fragile to operate them
in pressure filtration without supportive structure.
To improve mechanical stability of porous membranes, a mixture of silica particles with
an oil is spread onto a nonwoven fibrous support that was drenched with water. Solidification of
the oil and removal of particles yields porous membrane attached to the fibers of the support. Due
to inhomogeneous surface of the fabric, the membranes that are attached to it are corrugated.
To obtain flat supportive structures, glass beads with 75 μm in diameter are spread onto
the water surface with the oil. Solidification of the oil and then removal of particles gives rise to
porous membranes with pore diameters in micrometer range.
Another concept of improvement of mechanical stability is the preparation of asymmetric
membranes via spreading of a mixture of two sorts of particles with opposite surface properties
with the oil onto the water surface. After solidification of the oil and removal of particles, membranes
with pores width in the range from 30 – 50 nm are obtained.
Slow removal of silica particles from composite monolayer that floats on the water surface
gives rise to silica rings in intermediate stages of removal.
Mixed matrix membranes with embedded carbon molecular sieves are prepared in a similar
process as detailed above by using carbon particles instead of silica. Carbon molecular sieves
protrude at the top and bottom from the polymeric matrix. Theoretical prediction of permeability
and selectivity through these membranes are much higher than in membranes where particles are
smaller than the membrane thickness. / Spreitet man Mischungen eines Öls mit geeigneten Kieselgelpartikeln auf eine Wasseroberfläche,
führt dies zur Bildung gemischter Schichten, in denen die Partikel auf der Ober- und
Unterseite aus dem Öl herausragen. Härtet man das Öl aus und entfernt die Partikel, erhält man
poröse Membranen mit einheitlichen Poren. Dabei hängen die Porenweiten und Membrandicken
von der Partikelgröße ab und betragen üblicherweise 70 – 80 % von deren Durchmesser. Oft sind
freitragende poröse Membranen zu zerbrechlich um mit ihnen Druckfiltration ohne Stützstruktur
durchzuführen.
Um die mechanische Stabilität von porösen Membranen zu erhöhen spreitet man eine Mischung
aus Kieselgelpartikeln und einem Öl auf einem Vliesstoff, der mit Wasser getränkt ist.
Das Aushärten des Öls und die Entfernung der Partikel führt zu einer porösen Membran, die an
die Fasern der Stützstruktur angeheftet ist. Durch die inhomogene Oberfläche des Vliesgewebes
sind die daran angehefteten Membranen gewellt.
Um eine ebene Stützstruktur zu erhalten, werden Mischungen aus dem Öl und Glaskugeln
mit einem Durchmesser von 75 μm verwendet. Das Aushärten des Öls und die Entfernung der
Partikel führt zu ebenen porösen Membranen mit Porendurchmessern im Mikrometerbereich.
Ein weiteres Konzept, um die mechanische Stabilität zu erhöhen, ist die Herstellung asymmetrischer
Membranen mit Hilfe des Spreitens einer Mischung zweier Partikelsorten mit unterschiedlichen
Oberflächeneigenschaften mit dem Öl auf die Wasseroberfläche. Nach dem Aushärten
des Öls und der Entfernung der Partikel erhält man eine asymmetrische Membran mit kleinen
Porenweiten an der Oberseite und großen Porenweiten an der Unterseite.
Durch langsames Entfernen der Kieselgelpartikel aus der gemischten Schicht, die auf der
Wasseroberfläche schwimmt, kann man in einem Zwischenstadium Kieselgelringe erhalten.
Kompositmembranen (mixed matrix membranes) mit eingebetteten Kohlenstoffmolekularsieben
werden in einem gleichen Prozess wie oben beschrieben hergestellt, indem man Kohlenstoffpartikel
anstatt der Kieselgelpartikel verwendet. Die Kohlenstoffmolekularsiebe ragen auf
der Ober- und Unterseite aus der Polymermatrix heraus. Die theoretisch vorhersagten Durchlässigkeiten
und Selektivitäten solcher Membranen sind wesentlich höher als bei Membranen, in
denen die Partikel kleiner als der Membrandicke sind.
|
9 |
Synthesis and Characterization of Disulfonated Poly(Arylene Ether Sulfone) Random Copolymers as Multipurpose Membranes for Reverse Osmosis and Fuel Cell ApplicationsArnett, Natalie Yolanda 08 May 2009 (has links)
The results described in this dissertation focus on the synthesis and utilization of several disulfonated poly(arylene ether) random copolymer membranes in fuel cell and reverse osmosis applications. Poly(arylene ether)s were prepared by direct step copolymerization using a third monomer 3,3–-disulfonated 4,4–-dichlorodiphenylsulfone. The membrane properties of a 4,4–-biphenol-based disulfonated poly (arylene ether sulfone) random copolymer (BPS-35), optionally blended with various fluorine containing polymers or unsulfonated biphenol-based poly (arylene ether sulfone)s (Radel R) were investigated for fuel cell applications. Fluorine containing copolymers used included with 2,2–-hexafluoroisopropylidene 4,4–-biphenol based unsulfonated (6F-00) or disulfonated (6FS-35 and 6FS-60) PAES, hexafluoroisopropylidene biphenol based 4,4–-difluoro phenyl phosphine oxide) (6FPPO), and poly(vinylidene fluoride) (Kynar®). Tapping mode atomic force microscopy (TM-AFM) images of the membranes with 10 wt% of fluorinated copolymers showed macroscopic phase separation. Good miscibility between the copolymers at low concentrations was also confirmed by the observation of only one glass transition temperature. Compared to the benchmark Nafion 1135, the 10wt% blends of the fluorinated copolymers afforded a considerable reduction in the methanol permeabilities, which is important for direct methanol fuel cells (DMFC). The best DMFC performance with 0.5 M methanol fuel was illustrated with blends containing 10 wt% 6FS-00. At higher methanol concentrations (up to 2.0 M) BPS-35/6FS-00 (90/10) membranes outperformed both Nafion membranes.
Blends of BPS-35 blends with 6FS-35 or Radel R were also used as RO membranes. The highest salt rejections of 97.2 and 98.0% were obtained from BPS35/Radel R (90:10) and BPS-35/6FS-35 (95:5) blends, respectively in the salt form.
A systematic study of the preparation of BPS-20 random copolymer skin-core asymmetric membranes by diffusion induced phase separation (DIPS) from various polar aprotic solvent or cosolvent systems is reported. The best aprotic solvents to generate an asymmetric structure were NMP and DMAc whereas tetrahydrofuran (THF)/ formamide (FAm) (80/20 v/v) mixtures proved to be the best co-solvent systems. Acetone was the best non-solvent to prepare asymmetric membranes from both aprotic solvents and co-solvent mixtures. Overall, asymmetric membranes prepared from THF/FAm co-solvent mixtures illustrated the most stable phase separated morphology that was free of macrovoids. However, thicker skins (~5 μM) were formed due to the high volatility of THF. Therefore, ultra-thin skin thin film composites (TFC) based on BPS-20 in diethylene glycol (Di(EG) were prepared. Thermal treatment of these TFC was conducted at 90 °C and the addition of 20 wt% glycerin to the casting formulation helped to prevent pore collapse in the porous Udel polysulfone. A minimum of three coats was required to obtain a dense, smooth, and pinhole free skin layer. The generation of three dimensional (ternary) solubility parameter phase diagrams based on experimental data was formulated and a region of solubility based on the solubility parameters of the aprotic solvents and the different co-solvent systems was established for BPS-20. / Ph. D.
|
Page generated in 0.0707 seconds