Spelling suggestions: "subject:"asymptotic models"" "subject:"symptotic models""
1 |
A Global Biodiversity Estimate of a Poorly Known Taxon: phylum TardigradaBartels, Paul J., Apodaca, J. J., Mora, Camilo, Nelson, Diane R. 01 December 2016 (has links)
Although many estimates of species numbers have been attempted using various techniques, many smaller phyla remain poorly known without such estimates. For most of these it is unclear if they are species-poor or just poorly studied. The phylum Tardigrada is one of these phyla. Specialists have created a regularly updated checklist for the known tardigrade species, which as of 15 July 2013 listed 1190 taxa (species and subspecies). Of these, 1008 are limnoterrestrial and 182 are marine. These were the most up-to-date data at the time of our analysis. As species accumulation curves show little sign of levelling out, they do not provide a useful tool for estimating global tardigrade diversity from existing species numbers. A new technique has recently been developed that uses the more complete knowledge of higher taxonomic levels to estimate the asymptotic number of species. We applied this technique to limnoterrestrial and marine tardigrades. We estimate that the global total for limnoterrestrial tardigrades is 1145 (upper 95% CI = 2101), and the global total for marine tardigrades is 936 (upper 95% CI = 1803). This yields 87% completeness for our knowledge of limnoterrestrial tardigrades, and only 19% completeness for our knowledge of marine tardigrades. Thus, although many more marine species remain to be discovered, it appears that tardigrades are both poorly studied and relatively species poor.
|
2 |
Meteotsunamis, Proudman resonance and Corioliseffect for water waves / Météotsunamis, résonance de Proudman et effet Coriolis pour les équations de vaguesMelinand, Benjamin 28 June 2016 (has links)
Dans ce travail nous nous intéressons aux comportement de vagues soumises à l’action d’une pression atmosphérique non constante, un fond mobile et la force de Coriolis. Une première partie est dédiée à l’étude de la résonance de Proudman. Nous proposons une approche mathématique rigoureuse pour étudier ce phénomène. Nous commençons par démontrer un résultat d’existence locale dans un cadre irrotationnel sur les équations des vagues (appelées aussi formulation de Zakharov/Craig-Sulem). Puis, nous justifions différents modèles asymptotiques pour généraliser cette résonance dans diverses situations physiques. Nous proposons en particulier une étude détaillée dans des eaux profondes dans un régime linéaire. Nous étudions aussi la propagation de vagues dans des eaux profondes dans un régime faiblement non-linéaire grâce aux équations de Saut-Xu et nous proposons un schéma numérique pour résoudre ces équations. Dans une deuxième partie, nous étudions l’effet de la force de Coriolis sur les vagues. Nous démontrons un résultat d’existence locale sur les équations Castro-Lannes, équations qui généralisent la formulation de Zakharov/Craig-Sulem dans un cadre rotationnel. Nous justifions ensuite différents modèles asymptotiques dans des eaux peu profondes en présence de la force de Coriolis. En particulier, nous proposons une généralisation des équations de Boussinesq (modèle asymptotique dans un régime faiblement linéaire) lorsque la force de Coriolis n’est pas négligeable. Ces équations nous permettent ensuite de justifier mathématiquement les ondes de Poincaré puis l’équation d’Ostrovsky qui généralise l’équation de Korteweg-De-Vries en présence de la force de Coriolis. / In this work, we are interested in the evolution of water waves under the influence of a non constant atmospheric pressure, a moving bottom and a Coriolis forcing. In a first part, we study the Proudman resonance. We propose a mathematical approach to understand this phenomenon. First, we prove a local wellposedness result in a irrotational framework on the water waves equations (also called the Zakharov/Craig-Sulem formulation). Then, we fully justify different asymptotic models. In particular, we carefully study the Proudman resonance in deep water in the linear regime. Finally, we study the propagation of water waves in a weakly nonlinear regime thanks to the Saut-Xu equations and we propose a numerical scheme in order to solve these equations. In a second part, we study the influence of a Coriolis forcing on water waves. We prove a local wellposedness result on the Castro-Lannes equations, which generalize the Zakharov/Craig-Sulem formulation in the rotational framework. Then, we fully justify different asymptotic models when we take into account a Coriolis forcing. In particular, we generalize the Boussinesq equations (asymptotic model in a weakly nonlinear regime) in this setting. Thanks to these equations, we justify the Poincaré waves and then the Ostrovsky equation, which generalize the Korteweg-De- Vries equation when a Coriolis forcing is taking into account.
|
3 |
Modélisation et analyse mathématique de modèles en océanographie / Modeling and mathematical analysis of models in oceanographyLteif, Ralph 14 October 2016 (has links)
Cette thèse est dédiée à la modélisation et à l'analyse mathématique de modèles asymptotiques utilisés en océanographie décrivant la propagation des ondes internes à l'interface entre deux couches de fluides de densités différentes, soumis à la seule force de gravité.L'objectif de cette thèse est de construire et justifier de nouveaux modèles asymptotiques prenant en compte la variation de la topographie. Pour ce faire, on pose plusieurs hypothèses de petitesse sur la profondeur de l'eau et sur les déformations à l'interface et au fond. On s'intéresse plus particulièrement à deux régimes de variations topographiques, celui de moyenne amplitude et celui de lentes variations de grande amplitude.La première partie de cette thèse consiste à justifier rigoureusement et étudier mathématiquement (existence, unicité, stabilité et convergence de la solution) deux classes de modèles asymptotiques. Une classe de modèles couplés et une classe de modèles scalaires. Cette dernière classe est caractérisée par la description de la propagation unidirectionnelle des ondes internes.Dans la deuxième partie on propose un schéma numérique pour résoudre le modèle asymptotique couplé dérivé dans la première partie dans le cadre d'un font plat. Ce modèle existant dans la littérature a été reformulé d'une façon plus appropriée pour la résolution numérique en gardant le même ordre de précision que l'original et en améliorant ses propriétés de dispersion. Enfin nous présentons plusieurs simulations numériques pour valider notre schéma. / This thesis is dedicated to the modeling and the mathematical analysis of asymptotic models used in oceanography describing the propagation of internal waves at the interface between two layers of fluids of different densities, under the only influence of gravity.We aim here at constructing and justifying new asymptotic models taking into account variable topography. To this end, we assume several smallness assumptions on the depth of the water and on the deformations at the interface and at the bottom. We are interested in two topographic regimes, one for variations of medium amplitude and one for slow variations with large amplitude.In the first part of this thesis we rigorously justify and mathematically study (existence, uniqueness, stability and convergence of the solution) two classes of asymptotic models. A class of coupled models and a class of scalar models. The latter class is characterized by the description of the propagation of unidirectional internal waves. In the second part we propose a numerical resolution for the coupled asymptotic model derived in the first part restricted to the flat bottom case. This existing model in the literature has been rewritten under a new formulation more suitable for numericalresolution with the same order of precision as the standard one but with improved frequency dispersion. Finally, we present several numerical simulations to validate our scheme.
|
Page generated in 0.0382 seconds