Spelling suggestions: "subject:"asymptotical analysis"" "subject:"assymptotical analysis""
1 |
Autour des équations de contrainte en relativité générale / On the Constraint Equations in General RelativityValcu, Caterina 25 September 2019 (has links)
Le but à long terme de mon travail de recherche est de trouver une alternative viable à la méthode conforme, qui nous permettrait de mieux comprendre la structure géométrique de l'espace des solutions des équations de contrainte. L'avantage du modèle de Maxwell (the drift model) par rapport aux modèles plus classiques est la présence des paramètres supplémentaires. Le prix à payer, par contre, sera que la complexité analytique du système correspondant. Ma thèse a été structuré en deux parties : a. Existence sous la condition de petitesse des données initiales. Nous avons montré que le système de Maxwell est raisonnable dans le sens où nous pouvons le résoudre, malgré sa forte nonliniarité, sous des conditions de petitesse sur ses coefficients, en dimension 3, 4 et 5. Par conséquent, l'ensemble des solutions est non-vide. b. Stabilité Nous montrons la stabilité des solutions du système: ce résultat est obtenu en dimension 3,4 et 5, dans le cas où la métrique est conformément plate, et le drift et petit / The long-term goal of my work is to find a viable alternative to the conformal method, which would allow us to better understand the geometry of the space of solutions of the constraint equations. The advantage of Maxwell's model (the drift model) is the presence of additional parameters. Its downside, however, is that it proves to be much more difficult from an analytic standpoint. My thesis is structued in two parts: a. Existence under suitable smallness conditions. We show that Maxwell's system is sufficiently reasonable: it can be solved even given the presence of focusing non linearities. We prove this under smallness conditions of its coefficients, and in dimensions 3,4 and 5. An immediate consequence is that the set of solutions is non-empty. b. Stability. We verify that the solutions of the system are stable: this result holds in dimensions 3,4 and 5, when the metric is conformally flat and the drift is small
|
2 |
Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix modelsBothner, Thomas Joachim 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_)$ for all values of the real parameter $\gamma$.
|
Page generated in 0.0473 seconds