• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STRUCTURAL CHARACTERIZATION OF THE CERBERUS FOSSAE AND IMPLICATIONS FOR PALEODISCHARGE OF ATHABASCA VALLES, MARS

Runyon, Kirby Daniel January 2011 (has links)
Mechanically interacting fault systems on Earth are often associated with groundwater flow (e.g. Curewitz and Karson, 1997) by facilitating water storage and flow through fracture conduits before, during, and after seismic events (e.g. Sibson, 1975). Similar associations between interacting fault segments and fluid flow are present on Mars (Davatzes and Gulick, 2007a). The Cerberus Fossae compose a system of elongate topographic lows, a portion of which coincides with the source region of the outflow channel Athabasca Valles. The Cerberus Fossae and source area were mapped using Thermal Emission Imaging System (THEMIS) daytime IR mosaics and Context camera (CTX) images to establish spatial relations of structural features. Mars Orbiter Laser Altimeter (MOLA) elevation data were plotted to construct the depth profiles of the fossae to test the hypothesis that the Cerberus Fossae are normal fault-bounded graben. High Resolution Imaging Science Experiment (HiRISE) images were mapped for fractures within the fault damage zones with the degree of fracture plotted as a function of distance along strike. This plot established the spatial relations between fractures, mechanically interacting fossae segments, and Athabasca Valles. The depth profiles of the Cerberus Fossae are consistent with the displacement distribution of terrestrial normal faults with a surface expression consistent with fault propagation from depth and mechanical interaction among segments. Similarly, regions of interpreted mechanical interaction indicated by slip distribution and segment overlap correspond to increased fracture intensity and density. On Earth, such regions of mechanical interaction tend to have high fracture intensity (e.g. Davatzes et al., 2005), are associated with hydrothermal fluid flow (Curewitz and Karson, 1997), and have evidence of extensive long-term fluid flow as evidenced by diagenetic alterations (Eichhubl et al., 2004). Higher fracture intensities and densities near the head of Athabasca Valles as a proxy for increased permeability provide a potential mechanism and a necessary condition for the localized fluid flux necessary to supply the outflow channel. Thus, I conclude the Cerberus Fossae are mechanically interacting normal fault-bounded graben with highly permeable damage zones that would act to quickly dewater an aquifer resulting in the carving of Athabasca Valles. / Geology
2

Dike-Driven Hydrothermal Processes on Mars and Sill Emplacement on Europa

Craft, Kathleen Liana 07 November 2013 (has links)
Evidence of hydrothermal and tectonic activity is found throughout our solar system. Here I investigated hydrothermal and fracturing processes on three planetary bodies: Earth, Mars and Europa. For the first project, we set up a dike-driven hydrothermal system and calculated heat and water flow using boundary layer theory. Water flow rates and volumes were then compared to the requirements for surface feature formation. Results found that the water volumes produced were adequate to form Athabasca Valles, except the flow rates were low. Episodic flood releases could enable the higher flow rates if water was first collected in aquifers, possibly stored beneath ice. On the icy moon Europa, I modeled a proposed sill emplacement mechanism using a finite element code and found that water could flow up through an approximately 10 km thick ice shell without freezing. The analysis also found that shallow cracks in the ice combined with deep cracks cause a stress direction change that helps the fracture turn and propagate more horizontally. However, the sill lifetime is less than the time a study by Dombard et al. [2013] calculated to be necessary for the formation of flexure fractures along margins of double ridges. Replenishment processes will be explored in future work to help extend sill lifetime. The last investigation calculated dike induced permeability changes in the crust on Earth and Mars and related the changes to water and heat flow rates and water volumes. Comparisons were made to event plume heat and elevated fluid temperatures observed at mid-ocean ridges. Heat values determined by the models agreed well with the 10^14 to 10^17 J expected. For the Martian model, water flow rates and volumes were compared to formation requirements for the valley system Athabasca Valles. Results found that flow rates would be adequate in the high permeability damage zone adjacent to the dike. However, the lowered permeability outside the damage zone would restrict replenishment flow and could cause the need for water storage and periodic release between flood events as the volume within the damage zone is not adequate for the valley formation. / Ph. D.

Page generated in 0.0527 seconds