• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atmospheric Pressure Plasma Synthesis of Biocompatible Poly(ethylene glycol)-like Coatings

Nisol, Bernard 26 May 2011 (has links)
The role of a protein-repelling coating is to limit the interaction between a device and its physiological environment. Plasma-polymerized-PEG (pp-PEG) surfaces are of great interest since they are known to avoid protein adsorption. and cell attachment. However, in all the studies previously published in the literature, the PEG coatings have been prepared using low pressure processes. In this thesis, we synthesize biocompatible pp-PEG coatings using atmospheric pressure plasma. Two original methods are developed to obtain these pp-PEG films. 1. Atmospheric pressure plasma liquid deposition (APPLD) consists in the injection of the precursor, tetra(ethylene glycol)dimethylether (tetraglyme), by means of a liquid spray, directly in the post-discharge of an atmospheric argon plasma torch. 2. In atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD), tetraglyme vapors are brought in the post-discharge trough a heating sprinkler. The chemical composition, as well as the non-fouling properties of the APPLD and APPECVD films, are compared to those of PEG coatings synthesized by conventional low pressure plasma processes. In the first part of the study, the effect of the power on the chemical composition of the films has been investigated by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and secondary ions mass spectroscopy (SIMS). The surface analysis reveals that for the APPECVD samples, the fragmentation of the precursor increases as the power of the treatment is increased. In other terms, the lower the plasma power is, the higher the “PEG character” of the resulting films is. Indeed, the C-O component (286.5 eV) of the XPS C 1s peak is decreasing while the hydrocarbon component (285 eV) is increasing as the power of the plasma is increased. The same conclusion can be drawn from the signature ToF-SIMS peaks (m/z = 45 (CH3OCH2+ and +CH2CH2OH), 59 (CH3OCH2CH2+), 103 (CH3(OCH2CH2)2+)) that are decreasing in the case of high power treatments. Accordingly, IRRAS measurements show that the C-O stretching band is decreasing for high power plasma deposition. This is in agreement with the observations made from the analysis of the LP PECVD coatings and from the literature. The films deposited by the APPLD process do not show the same behavior. Indeed, whatever the power injected into the discharge is, we are able to achieve films with a relatively high PEG character (83 %). The second part of this study is dedicated to the evaluation of the non-fouling properties of the coatings by exposing them to proteins (bovine serum albumin and human fibrinogen) and cells (mouse fibroblasts (L929 and MEF)) and controlling the adsorption with XPS (proteins) and SEM (cells). For the APPECVD samples, a low plasma power (30 W) leads to an important reduction of protein adsorption and cell adhesion (over 85%). However, higher-powered treatments tend to reduce the non-fouling ability of the surfaces (around 50% of reduction for a 80 W deposition). The same order of magnitude (over 90% reduction of the adsorption) is obtained for the APPLD surfaces, whatever is the power of the treatment. Those results show an important difference between the two processes in terms of power of the plasma treatment, and a strong relationship between the surface chemistry and the adsorption behavior: the more the PEG character is preserved, the more protein-repellent and cell-repellent is the surface. / Le rôle d’une couche empêchant l’adsorption de protéines est de limiter les interactions entre un implant et le milieu physiologique auquel il est exposé. Les films de poly(éthylène glycol) polymérisés par plasma (pp-PEG) sont d’intérêt majeur car ils sont connus pour empêcher l’adsorption de protéines ainsi que l’attachement cellulaire. Cependant, dans toutes les études publiées précédemment, les couches de type PEG ont été réalisées sous vide. Dans cette thèse de doctorat, nous synthétisons des couches de type pp-PEG biocompatibles par plasmas à pression atmosphérique. A cette fin, deux méthodes originales ont été développées. 1. La première méthode consiste en l’injection du précurseur, le tetra(éthylène glycol) diméthyl éther (tetraglyme), en phase liquide, en nébulisant ce dernier au moyen d’un spray, directement dans la post-décharge d’une torche à plasma atmosphérique fonctionnant à l’argon. En anglais, nous appelons ce procédé « Atmospheric pressure plasma liquid deposition (APPLD) ». 2. Dans la deuxième méthode, appelée en anglais « Atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD)», le tetraglyme est amené en phase vapeur dans la post-décharge, au moyen d’un diffuseur chauffant. La composition chimique des dépôts de type APPLD et APPECVD, ainsi que leurs propriétés d’anti-adsorption sont évaluées, et comparées aux dépôts pp-PEG obtenus par les méthodes à basse pression conventionnelles. Dans la première partie de cette étude, nous nous focalisons sur la composition chimique des films déposés, et plus particulièrement sur l’influence de la puissance injectée dans le plasma sur cette composition chimique. A cette fin, nous avons fait appel à des techniques d’analyse telles que la spectroscopie de réflexion-absorption infrarouge (IRRAS), la spectroscopie des photoélectrons X (XPS) et la spectrométrie de masse des ions secondaires (SIMS). Il en ressort que les films de type APPECVD perdent progressivement leur « caractère PEG » à mesure que la puissance de la décharge plasma est élevée. Cela serait dû à une plus grande fragmentation du précurseur dans la post-décharge d’un plasma plus énergétique. Cette tendance est cohérente avec ce que nous avons observé pour les dépôts à basse pression ainsi que dans la littérature. Dans le cas des films de type APPLD, un tel comportement n’a pas été mis en évidence : quelle que soit la puissance dissipée dans le plasma, les films présentent un « caractère PEG » relativement élevé. La deuxième partie de cette thèse est dédiée à l’évaluation des propriétés d’anti-adsorption des films synthétisés, en les exposant à des protéines (albumine de sérum bovin et fibrinogène humain) et des cellules (fibroblastes de souris, L929 et MEF). L’adsorption de protéines est contrôlée par XPS tandis que l’attachement cellulaire est contrôlé par imagerie SEM. Pour les échantillons de type APPECVD, un dépôt à faible puissance (30 W) mène à une importante réduction de l’adsorption de protéines et de cellules (> 85%) tandis qu’à de plus hautes puissances (80 W), l’anti-adsorption est sensiblement diminuée (50% de réduction). Dans le cas des dépôts de type APPLD, quelle que soit la puissance du plasma, une forte diminution de l’adsorption de protéines et de cellules est observée (> 90 %). Ces résultats montrent une différence majeure entre les deux procédés quant à l’influence de la puissance du plasma ainsi qu’une forte relation entre la composition chimique de la surface synthétisée et son pouvoir d’anti-adsorption : plus le « caractère PEG » du dépôt est conservé, plus la surface empêchera l’interaction avec les protéines et les cellules.
2

Atmospheric pressure plasma synthesis of biocompatible poly(ethylene glycol)-like coatings

Nisol, Bernard 26 May 2011 (has links)
The role of a protein-repelling coating is to limit the interaction between a device and its physiological environment. Plasma-polymerized-PEG (pp-PEG) surfaces are of great interest since they are known to avoid protein adsorption. and cell attachment. However, in all the studies previously published in the literature, the PEG coatings have been prepared using low pressure processes. <p>In this thesis, we synthesize biocompatible pp-PEG coatings using atmospheric pressure plasma. Two original methods are developed to obtain these pp-PEG films. 1. Atmospheric pressure plasma liquid deposition (APPLD) consists in the injection of the precursor, tetra(ethylene glycol)dimethylether (tetraglyme), by means of a liquid spray, directly in the post-discharge of an atmospheric argon plasma torch. 2. In atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD), tetraglyme vapors are brought in the post-discharge trough a heating sprinkler. The chemical composition, as well as the non-fouling properties of the APPLD and APPECVD films, are compared to those of PEG coatings synthesized by conventional low pressure plasma processes.<p>In the first part of the study, the effect of the power on the chemical composition of the films has been investigated by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and secondary ions mass spectroscopy (SIMS). <p>The surface analysis reveals that for the APPECVD samples, the fragmentation of the precursor increases as the power of the treatment is increased. In other terms, the lower the plasma power is, the higher the “PEG character” of the resulting films is. Indeed, the C-O component (286.5 eV) of the XPS C 1s peak is decreasing while the hydrocarbon component (285 eV) is increasing as the power of the plasma is increased. The same conclusion can be drawn from the signature ToF-SIMS peaks (m/z = 45 (CH3&61485;O&61485;CH2+ and +CH2CH2&61485;OH), 59 (CH3&61485;O&61485;CH2&61485;CH2+), 103 (CH3&61485;(O&61485;CH2&61485;CH2)2+)) that are decreasing in the case of high power treatments. Accordingly, IRRAS measurements show that the C-O stretching band is decreasing for high power plasma deposition. This is in agreement with the observations made from the analysis of the LP PECVD coatings and from the literature.<p>The films deposited by the APPLD process do not show the same behavior. Indeed, whatever the power injected into the discharge is, we are able to achieve films with a relatively high PEG character (&61566;83 %).<p>The second part of this study is dedicated to the evaluation of the non-fouling properties of the coatings by exposing them to proteins (bovine serum albumin and human fibrinogen) and cells (mouse fibroblasts (L929 and MEF)) and controlling the adsorption with XPS (proteins) and SEM (cells).<p>For the APPECVD samples, a low plasma power (30 W) leads to an important reduction of protein adsorption and cell adhesion (over 85%). However, higher-powered treatments tend to reduce the non-fouling ability of the surfaces (around 50% of reduction for a 80 W deposition). <p>The same order of magnitude (over 90% reduction of the adsorption) is obtained for the APPLD surfaces, whatever is the power of the treatment. <p>Those results show an important difference between the two processes in terms of power of the plasma treatment, and a strong relationship between the surface chemistry and the adsorption behavior: the more the PEG character is preserved, the more protein-repellent and cell-repellent is the surface. / Le rôle d’une couche empêchant l’adsorption de protéines est de limiter les interactions entre un implant et le milieu physiologique auquel il est exposé. Les films de poly(éthylène glycol) polymérisés par plasma (pp-PEG) sont d’intérêt majeur car ils sont connus pour empêcher l’adsorption de protéines ainsi que l’attachement cellulaire. Cependant, dans toutes les études publiées précédemment, les couches de type PEG ont été réalisées sous vide.<p>Dans cette thèse de doctorat, nous synthétisons des couches de type pp-PEG biocompatibles par plasmas à pression atmosphérique. A cette fin, deux méthodes originales ont été développées. 1. La première méthode consiste en l’injection du précurseur, le tetra(éthylène glycol) diméthyl éther (tetraglyme), en phase liquide, en nébulisant ce dernier au moyen d’un spray, directement dans la post-décharge d’une torche à plasma atmosphérique fonctionnant à l’argon. En anglais, nous appelons ce procédé « Atmospheric pressure plasma liquid deposition (APPLD) ». 2. Dans la deuxième méthode, appelée en anglais « Atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD)», le tetraglyme est amené en phase vapeur dans la post-décharge, au moyen d’un diffuseur chauffant. La composition chimique des dépôts de type APPLD et APPECVD, ainsi que leurs propriétés d’anti-adsorption sont évaluées, et comparées aux dépôts pp-PEG obtenus par les méthodes à basse pression conventionnelles.<p>Dans la première partie de cette étude, nous nous focalisons sur la composition chimique des films déposés, et plus particulièrement sur l’influence de la puissance injectée dans le plasma sur cette composition chimique. A cette fin, nous avons fait appel à des techniques d’analyse telles que la spectroscopie de réflexion-absorption infrarouge (IRRAS), la spectroscopie des photoélectrons X (XPS) et la spectrométrie de masse des ions secondaires (SIMS). <p>Il en ressort que les films de type APPECVD perdent progressivement leur « caractère PEG » à mesure que la puissance de la décharge plasma est élevée. Cela serait dû à une plus grande fragmentation du précurseur dans la post-décharge d’un plasma plus énergétique. Cette tendance est cohérente avec ce que nous avons observé pour les dépôts à basse pression ainsi que dans la littérature.<p>Dans le cas des films de type APPLD, un tel comportement n’a pas été mis en évidence :quelle que soit la puissance dissipée dans le plasma, les films présentent un « caractère PEG » relativement élevé.<p>La deuxième partie de cette thèse est dédiée à l’évaluation des propriétés d’anti-adsorption des films synthétisés, en les exposant à des protéines (albumine de sérum bovin et fibrinogène humain) et des cellules (fibroblastes de souris, L929 et MEF). L’adsorption de protéines est contrôlée par XPS tandis que l’attachement cellulaire est contrôlé par imagerie SEM.<p>Pour les échantillons de type APPECVD, un dépôt à faible puissance (30 W) mène à une importante réduction de l’adsorption de protéines et de cellules (> 85%) tandis qu’à de plus hautes puissances (80 W), l’anti-adsorption est sensiblement diminuée (50% de réduction). Dans le cas des dépôts de type APPLD, quelle que soit la puissance du plasma, une forte diminution de l’adsorption de protéines et de cellules est observée (> 90 %).<p>Ces résultats montrent une différence majeure entre les deux procédés quant à l’influence de la puissance du plasma ainsi qu’une forte relation entre la composition chimique de la surface synthétisée et son pouvoir d’anti-adsorption :plus le « caractère PEG » du dépôt est conservé, plus la surface empêchera l’interaction avec les protéines et les cellules. <p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
3

Couplage d’une décharge à barrière diélectrique avec un aérosol pour le dépôt de couches minces (multi)fonctionnelles : rôle de l’injection pulsée de précurseurs

Cacot, Laura 11 1900 (has links)
Thèse en cotutelle / L'objectif de cette thèse est de réaliser une étude fondamentale de pointe du couplage d'injections pulsées d'aérosols avec une décharge à barrière diélectrique (DBD) à la pression atmosphérique pour le dépôt de films minces (multi)fonctionnels. Dans ce contexte, à partir de mesures électriques et spectroscopiques de la DBD, couplées à la simulation de l’écoulement gazeux, nous avons d'abord étudié la perturbation d'une injection pulsée de gaz sur la stabilité de la décharge. Nous avons observé que le fonctionnement pulsé introduit des changements significatifs dans la composition du gaz dû à des phénomènes de recirculation et de dégazage en amont de la cellule de décharge. Nous avons également examiné les effets d’une injection pulsée de liquide d'un précurseur organosilicié (HMDSO) sur la décharge et les couches minces déposées. Il s'avère que la décharge devient filamentaire et que la vitesse de dépôt est limitée par la quantité d'énergie fournie aux gouttelettes de précurseur, et non par la quantité de précurseur. Dans ces conditions, le dépôt repose sur le chargement des gouttelettes micrométriques par le plasma et leur transport vers le substrat par les forces de Coulomb et de traînée par les neutres. De plus, la morphologie de la couche mince et la fragmentation du précurseur sont fortement liés à la quantité d'énergie fournie par la décharge filamentaire aux gouttelettes d’HMDSO. Alors que des revêtements réticulés et lisses sont obtenus à de faibles énergies comme pour les plasma-polymères standards, des films minces visqueux sont déposés à des énergies plus élevées. Ce dernier matériau est attribué à une polymérisation douce des gouttelettes d'HMDSO. Selon un contrôle judicieux des interactions plasma-gouttelettes, par exemple en variant les paramètres de la décharge comme la fréquence d'excitation, il est possible d’ajuster l’efficacité du dépôt, le degré de polymérisation et la cinétique de formation de poudres. Enfin, nous avons intégré l’ensemble de ces connaissances afin d’explorer le potentiel d’un réacteur-injecteur (permettant l’injection pulsée de précurseurs et de nanoparticules) pour la synthèse de films minces nanocomposites dans les décharges à barrière diélectrique à la pression atmosphérique. / The objective of this thesis is to perform a fundamental state-of-the-art study of the coupling of pulsed aerosol injections with a dielectric barrier discharge (DBD) at atmospheric pressure for the deposition of (multi)functional thin films. In this context, from electrical and spectroscopic measurements of the DBD, coupled with gas flow simulation, we first studied the perturbation of a pulsed gas injection on the stability of the discharge. We observed that pulsed operation introduces significant changes in the gas composition due to recirculation and outgassing phenomena upstream of the discharge cell. We also examined the effects of pulsed liquid injection of an organosilicon precursor (HMDSO) on the discharge and the deposited thin films. It is found that the discharge becomes filamentary and the deposition rate is limited by the amount of energy supplied to the precursor droplets, not the amount of precursor. Under these conditions, the deposition relies on the charging of the micrometer droplets by the plasma and their transport to the substrate by the Coulomb and neutral drag forces. In addition, the thin film morphology and precursor fragmentation are strongly related to the amount of energy supplied by the filamentary discharge to the HMDSO droplets. While smooth cross-linked coatings are obtained at low energies as for standard plasma-polymers, viscous thin films are deposited at higher energies. The latter material is attributed to a soft polymerization of HMDSO droplets. Depending on a judicious control of the plasma-droplet interactions, for example by varying the discharge parameters such as the excitation frequency, it is possible to adjust the deposition efficiency, the degree of polymerization and the kinetics of powder formation. Finally, we have integrated all this knowledge to explore the potential of a reactor-injector (allowing pulsed injection of precursors and nanoparticles) for the synthesis of nanocomposite thin films in dielectric barrier discharges at atmospheric pressure.

Page generated in 0.4456 seconds