• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Analysis of an All-optical Free-space Communication Link

Levander, Fredrik, Sakari, Per January 2002 (has links)
Free Space Optics (FSO) has received a great deal of attention lately both in the military and civilian information society due to its potentially high capacity, rapid deployment, portability and high security from deception and jamming. The main issue is that severe weather can have a detrimental impact on the performance, which may result in an inadequate availability. This report contains a feasibility study for an all-optical free-space link intended for short-range communication (200-500 m). Laboratory tests have been performed to evaluate the link design. Field tests were made to investigate availability and error performance under the influence of different weather conditions. Atmospheric impact due to turbulence related effects have been studied in detail. The most crucial part of the link design turned out to be the receiver optics and several design solutions were investigated. The main advantage of an all-optical design, compared to commercially available electrooptical FSO-systems, is the potentially lower cost.
2

Design and Analysis of an All-optical Free-space Communication Link

Levander, Fredrik, Sakari, Per January 2002 (has links)
<p>Free Space Optics (FSO) has received a great deal of attention lately both in the military and civilian information society due to its potentially high capacity, rapid deployment, portability and high security from deception and jamming. The main issue is that severe weather can have a detrimental impact on the performance, which may result in an inadequate availability. </p><p>This report contains a feasibility study for an all-optical free-space link intended for short-range communication (200-500 m). Laboratory tests have been performed to evaluate the link design. Field tests were made to investigate availability and error performance under the influence of different weather conditions. Atmospheric impact due to turbulence related effects have been studied in detail. The most crucial part of the link design turned out to be the receiver optics and several design solutions were investigated. The main advantage of an all-optical design, compared to commercially available electrooptical FSO-systems, is the potentially lower cost.</p>
3

Computer simulation of stand-off LIBS and Raman LIDAR for remote sensing of distant compounds

Pliutau, Dzianis 01 June 2007 (has links)
Long range stand-off Raman and Laser-Induced Breakdown Spectroscopy (LIBS) lidar signal simulations have been carried out using a modified UV-visible atmospheric transmission program and a modified lidar equation. The Hitran-PC atmospheric transmission program which normally operates over the wavelength range of 400 nm to the far-IR was modified to provide UV atmospheric attenuation (200 nm -- 400 nm) using the optical cross section data contained in the HITRAN database. The two-way lidar equation was modified in order to simulate the one-way propagation of the Raman and LIBS spectral, and thus provide calculations of the expected Raman or LIBS signal as a function of range. Estimation of the LIBS and Raman spectral intensity was then calculated for several remote sensing cases. In particular, the atmospheric attenuation spectra generated with the modified Hitran-PC program were combined with the calculated LIBS and Raman lidar emission spectra at the remote excitation site using a modified lidar equation to determine for the first time to our knowledge the power and S/N ratio versus range of the LIBS and Raman Lidar complete spectrum as a function of wavelength in the UV -- IR region. Previous simulations had only made S/N versus range calculations at a single wavelength or for the total integrated emission. These results are important as they can be used for future design of stand-off LIBS and Raman lidar systems, and for comparisons with experimental measurements. In particular, we are planning to use our simulations for comparison of 266 nm excited LIBS and Raman lidar measurements of energetic compounds at ranges of a few tens of meters.
4

Free Space Optics for 5G Backhaul Networks and Beyond

Alheadary, Wael 08 1900 (has links)
The exponential increase of mobile users and the demand for high-speed data services has resulted in significant congestions in cellular backhaul capacity. As a solution to satisfy the traffic requirements of the existing 4G network, the 5G network has emerged as an enabling technology and a fundamental building block of next-generation communication networks. An essential requirement in 5G backhaul networks is their unparalleled capacity to handle heavy traffic between a large number of devices and the core network. Microwave and optic fiber technologies have been considered as feasible solutions for next-generation backhaul networks. However, such technologies are not cost effective to deploy, especially for the backhaul in high-density urban or rugged areas, such as those surrounded by mountains and solid rocks. Additionally, microwave technology faces alarmingly challenging issues, including limited data rates, scarcity of licensed spectrum, advanced interference management, and rough weather conditions (i.e., rain, which is the main weather condition that affects microwave signals the most). The focus of this work is to investigate the feasibility of using free-space-optical (FSO) technology in the 5G cellular backhaul network. FSO is a cost-effective and wide-bandwidth solution as compared to traditional backhaul solutions. However, FSO links are sensitive to atmospheric turbulence-induced fading, path loss, and pointing errors. Increasing the reliability of FSO systems while still exploiting their high data rate communications is a key requirement in the deployment of an FSO backhaul network. Overall, the theoretical models proposed in this work will be shown to enhance FSO link performance. In the experimental direction, we begin by designing an integrated mobile FSO system. To the best of our knowledge, no work in the literature has addressed the atmospheric path loss characterization of mobile FSO channels in a coastal environment. Therefore, we investigate the impact of weather effects in Thuwal, Saudi Arabia, over FSO links using outdoor and indoor setups. For the indoor experiments, results are reported based on a glass climate chamber in which we could precisely control the temperature and humidity.
5

Model atmosférického prostředí pro optické bezkabelové spoje / Model of atmospheric transmission media for free space optics

Přikryl, Petr January 2013 (has links)
The aim of this thesis is to study the methods of a free space optical link design and its application in the communication technologies. The thesis describes possible intrusive influences on the transmitted optical signal, which are the signal noise, atmospheric attenuation and atmospheric turbulences. The thesis is particulary focused on the influence of the atmospheric turbulences and atmospheric attenuation on the optical beam.
6

CHYBOVOST A DOSTUPNOST ATMOSFÉRICKÝCH OPTICKÝCH SPOJŮ / BIT ERROR RATE AND AVAILABILITY OF THE ATMOSPHERIC OPTICAL LINKS

Kvíčala, Radek January 2009 (has links)
This dissertation deals with the problematic of the free space optical link availability determination. For the presumption of the free space optical link unavailability we have to know statistical distribution of the atmospheric attenuations. In this work is also presented the measurement of these atmospheric attenuations with the specially designed optical link. Measurement is using switching of the two separate transmitters with wavelengths of 830 nm and 1550 nm. Presented statistic distribution let us determine the suitability of the link in the chosen locality during its design. Comparison of our measurement with other models like model based on the meteorological visibility is also presented. The last part of this work is focused on the preconditions for the hi-speed network bit error rate determination. Sample of the bit error rate measurement obtained by our designed bit error rate tester is attached.

Page generated in 0.1126 seconds