• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimising fall out dust monitoring at a cement manufacturing plant.

Joubert, J. M. (Jacobus Marthinus) January 2012 (has links)
Thesis (MTech. degree in Environmental Health)--Tshwane University of Technology, 2012. / Fall out dust sampling and monitoring is becoming one of the preferred methods to determine dust pollution impact from industries/or mines on the receiving environment. Fall out dust monitoring is a useful and cost effective method of providing trend analysis of dust deposition over a period of time. It also provides an indication of the main areas of dust generation and can be conducted for both health and nuisance purposes.The aim of the study was to develop a positioning guideline for fall out dust monitoring equipment in order to optimise the existing fall out dust programme.
2

Characterisation of dust fallout around the City of Tshwane (CoT), Gauteng, South Africa

Sebaiwa, Marks Matee 12 July 2016 (has links)
The aim of the project was to study the mineral, chemical and morphological characteristics of the fallout dust samples. The dust fallout samples were collected at five different sites following the internationally accepted standard procedure for collection and analysis, South African National Standard and American Standard for Testing Methods (ASTM) D1739-98 (2010). Passive single buckets containing ¾ of distilled water and 10.0 ml of sodium hypochlorite (NaOCl) solution, hoisted at a height of about 2.5 m were exposed from March – June 2013 and were collected every month, taken to the laboratory for characterization. First, the samples were filtered and mass concentrations per month were gravimetrically measured. The samples were then prepared for further characterization by the MicroScan Particle Analyser (MSPA)(Microscope UOP UB 100j) which measured the mineral content and the Scanning Electron Microscope - Energy Dispersive X- ray (SEM - EDX) measured the images of different particles (size, shape) and their elemental content. The results from the MicroScan analysis showed the prevalence of sandy rounded-shaped quartz (SiO2) particles across all sites. Minerals detected within the crustal material at all sites were quartz (SiO2), haematite (Fe; Fe2O3; Al2O3), feldspar (Na, K, Mg, Ca: AI2Si2O8), garnet (SiO4), aluminium silicates (AI2Si2O8) and calcium hydroxide [Ca (OH)2]. Evidently, sites A, B and C dominated the abundance of these minerals. On the other hand, sites D and E showed fine and rounded quartz and quartzite with various trace metal oxides. Measured elements in decreasing concentrations were Si, Ca, P, Al, K, S, Fe, Cu, Ti and Mg. Both coarse particle (2.5 - 10.0 μm) and fine particle sizes ranges (< 1.0 to 2.5 μm) were detected. Large irregular shaped particles sizes were common and were linked to crustal material. The results provide good baseline information which requires further characterization of samples by different analytical techniques and validation of possible sources. The ICP-MS was used to determine the elemental composition of dust fallout and the mean concentration of the elements of concern ranged from 1.1 - 2.6 for As, 0.2 - 0.6 for Cd, 17.0 - 21.9 for Ni, 449.8 - 751.1 for Pb, 9.9 - 22.3 for V and 101.7 - 293.0 μg/m3 for Zn. The elements such as Cd exceeded the set limit 0.005 μg/m3 by OSHA (2015) and NIOSH (2007); Pb exceeded the set standard of 0.5 μg/m3 set by OSHA (2015), NIOSH (2007), WHO (2000), USEPA (2012) and DEA (2013). The rest of the elements fell within the set guidelines by various regulatory national and international bodies. The study concludes that, although, all the sampling sites recorded the dust fallout rates within the SANS 1929 (2011) and DEA (2013) average RESIDENTIAL limit of 600 mg/m2/day, the future accumulation and exceedances cannot be ruled out owing to the increasing developments in urban areas / Environmental Sciences / M. Sc. (Environmental Science)

Page generated in 0.1257 seconds