• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Konzeptentwurf zur autarken Bewässerung von urbanen Bepflanzungen mittels kondensiertem Wasser aus der Umgebungsluft

Michaelsen, Elias 17 February 2022 (has links)
No description available.
2

Thermally Driven Technologies for Atmospheric Water Capture to Provide Decentralized Drinking Water

January 2020 (has links)
abstract: Limited access to clean water due to natural or municipal disasters, drought, or contaminated wells is driving demand for point-of-use and humanitarian drinking water technologies. Atmospheric water capture (AWC) can provide water off the centralized grid by capturing water vapor in ambient air and condensing it to a liquid. The overarching goal of this dissertation was to define geographic and thermodynamic design boundary conditions for AWC and develop nanotechnology-enabled AWC technologies to produce clean drinking water. Widespread application of AWC is currently limited because water production, energy requirement, best technology, and water quality are not parameterized. I developed a geospatial climatic model for classical passive solar desiccant-driven AWC, where water vapor is adsorbed onto a desiccant bed at night, desorbed by solar heat during the day, and condensed. I concluded passive systems can capture 0.25–8 L/m2/day as a function of material properties and climate, and are limited because they only operate one adsorption-desorption-condensation cycle per day. I developed a thermodynamic model for large-scale AWC systems and concluded that the thermodynamic limit for energy to saturate and condense water vapor can vary up to 2-fold as a function of climate and mode of saturation. Thermodynamic and geospatial models indicate opportunity space to develop AWC technologies for arid regions where solar radiation is abundant. I synthesized photothermal desiccants by optimizing surface loading of carbon black nanoparticles on micron-sized silica gel desiccants (CB-SiO2). Surface temperature of CB-SiO2 increased to 60oC under solar radiation and water vapor desorption rate was 4-fold faster than bare silica. CB-SiO2 could operate >10 AWC cycles per day to produce 2.5 L/m2/day at 40% relative humidity, 3-fold more water than a conventional passive system. Models and bench-scale experiments were paired with pilot-scale experiments operating electrical desiccant and compressor dehumidifiers outdoors in a semi-arid climate to benchmark temporal water production, water quality and energy efficiency. Water quality varied temporally, e.g, dissolved organic carbon concentration was 3 – 12 mg/L in the summer and <1 mg/L in the winter. Collected water from desiccant systems met all Environmental Protection Agency standards, while compressor systems may require further purification for metals and turbidity. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
3

Atmospheric Water Harvesting: An Experimental Study of Viability and the Influence of Surface Geometry, Orientation, and Drainage

Hand, Carson T 01 June 2019 (has links)
Fresh water collection techniques have gained significant attention due to global dwindling of fresh water resources and recent scares such as the 2011-2017 California drought. This project explores the economic viability of actively harvesting water from fog, and techniques to maximize water collection. Vapor compression and thermoelectric cooling based dehumidifier prototypes are tested in a series of experiments to assess water collection capability in foggy environments, and what parameters can increase that capability. This testing shows an approximate maximum collection rate of 1.25 L/kWh for the vapor compression prototype, and 0.32 L/kWh for the thermoelectric cooling prototype; compared to 315 L/kWh for desalination or 12 L/m2/day for passive meshes. Exploration of parameters on the thermoelectric cooling prototype show a potential increase in water collection rate of 29% with the addition of a Teflon coating to the collection surface, 15% by clearing the collection surface, and 89% by tilting certain collection surfaces by 60-75°. In combination, these parameters could push active atmospheric water harvesting into economic viability where significant infrastructure investment is not feasible.
4

Uncovering the Efficiency Limits to Obtaining Water: On Earth and Beyond

Akshay K Rao (12456060) 26 April 2022 (has links)
<p> Inclement challenges of a changing climate and humanity's desire to explore extraterrestrial environments both necessitate efficient methods to obtain freshwater. To accommodate next generation water technology, there is a need for understanding and defining the energy efficiency for unconventional water sources over a broad range of environments. Exergy analysis provides a common description for efficiency that may be used to evaluate technologies and water sources for energy feasibility. This work uses robust thermodynamic theory coupled with atmospheric and planetary data to define water capture efficiency, explore its variation across climate conditions, and identify technological niches and development needs.  </p> <p><br></p> <p> We find that desalinating saline liquid brines, even when highly saline, could be the most energetically favorable option for obtaining water outside of Earth. The energy required to access water vapor may be four to ten times higher than accessing ice deposits, however it offers the capacity for decentralized systems. Considering atmospheric water vapor harvesting on Earth, we find that the thermodynamic minimum is anywhere from 0x (RH≥ 100%) to upwards of 250x (RH<10\%) the minimum energy requirement of seawater desalination. Sorbents, modelled as metal organic frameworks (MOFs), have a particular niche in arid and semi-arid regions (20-30%). Membrane-systems are best at low relative humidity and the region of applicability is strongly affected by the vacuum pumping efficiency. Dew harvesting is best at higher humidity and fog harvesting is optimal when super-saturated conditions exist. Component (e.g., pump, chiller, etc.) inefficiencies are the largest barrier in increasing process-level efficiency and strongly impact the regions optimal technology deployment. The analysis elucidates a fundamental basis for comparing water systems energy efficiency for outer space applications and provides the first thermodynamics-based comparison of classes of atmospheric water harvesting technologies on Earth.</p>
5

Sorbent Based Atmospheric Vapor Harvesting: Energy Delivery To Material Choice

Nepal, Suman 02 August 2023 (has links)
No description available.
6

Cellulose-Based Hydrogels for High-Performance Buildings and Atmospheric Water Harvesting

Noor Mohammad Mohammad (17548365) 04 December 2023 (has links)
<p dir="ltr">Smart windows, dynamically adjusting optical transmittance, face global adoption challenges due to climatic and economic variability. Aiming these issues, we synthesized a methyl cellulose (MC) salt system with high tunability for intrinsic optical transmittance (89.3%), which can be applied globally to various locations. Specifically, the MC window has superior heat shielding potential below transition temperatures while turning opaque at temperatures above the Lower Critical Solution Temperature (LCST), reducing the solar heat gain by 55%. Such optical tunability is attributable to the particle size change triggered by the temperature-induced reversible coil-to-globular transition. This leads to effective refractive index and scattering modulation, making them prospective solutions for light management systems, an application ahead of intelligent fenestration systems. MC-based windows demonstrated a 9°C temperature decrease compared to double-pane windows on sunny days and a 5°C increase during winters in field tests, while simulations predict an 11% energy savings.</p><p dir="ltr">Incorporating MC-based phase change materials in passive solar panels indicated optimized energy efficiency, offering a sustainable alternative. Real-time simulations validate practical applicability in large-scale solar panels. Furthermore, a temperature-responsive sorbent with a dark layer demonstrates an optimal optical and water uptake performance. Transitioning between radiative cooling and solar heating, the sorbent exhibits high water harvesting efficiency in lab and field tests. With an adjustable LCST at 38 ℃, the cellulose-based sorbent presents a potential solution for atmospheric water harvesting, combining optical switching and temperature responsiveness for sustainable water access. Furthermore, the ubiquitous availability of materials, low cost, and ease-of-manufacturing will provide technological equity and foster our ambition towards net-zero buildings and sustainable future.</p>

Page generated in 0.0952 seconds