• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 145
  • 145
  • 26
  • 23
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Nonlinear propagation of incoherent white light in a photopolymerisable medium: From single self-trapped beams to 2-D and 3-D lattices

Kasala, Kailash 10 1900 (has links)
<p>Optical beams that travel through a material without undergoing divergence are known as self-trapped beams. Self-trapping occurs when a beam induces a suitable index gradient in the medium that is capable of guiding the original beam. An incoherent light consists of femtosecond scale speckles, due to random phase fluctuations and were not thought to self-trap until recently. In 1997, Mitchell et al., showed that white light can self-trap, provided the medium cannot respond fast enough to form index gradients to these speckles individually. However, detailed studies have been hampered by a lack of suitable materials and strategies for enabling such a response. In 2006, our group showed that a photopolymer is suitable for incoherent self-trapping, since the index change is governed by an inherently slow rate of polymerization (of the order of milliseconds). This has enabled further studies of various phenomena with white light self-trapping.</p> <p>The studies here show (i) the first direct experimental evidence of interactions of two incoherent white light self-trapped beams, as well as fission, fusion and repulsion. Existence of dark self-trapping beams with incoherent white light was also shown, counter intuitively in a positive nonlinear medium. (iii) Lattices were formed with multiple ordered bright as well as dark self-trapping filaments using optochemical self-organization. (iv) Woodpile-like 3D lattices with bright and dark beams were also demonstrated and simulations showed theoretical band gaps. (v) Self-trapping of a co-axial beam of incoherent white light was also shown experimentally and through simulations.</p> / Doctor of Philosophy (PhD)
112

Quantum Foundations with Astronomical Photons

Leung, Calvin 01 January 2017 (has links)
Theoretical work in quantum information has demonstrated that a classical hidden-variable model of an entangled singlet state can explain nonclassical correlations observed in tests of Bell’s inequality if while measuring the Bell correlation, the underlying probability distribution of the hidden-variable changes depending on the measurement basis. To rule out this possibility, distant quasars can be utilized as random number generators to set measurement bases in an experimental test of Bell’s inequality. Here we report on the design and characterization of a device that uses the color of incoming quasar photons to output a random bit with nanosecond latency. Through the 1-meter telescope at JPL Table Mountain Observatory, we observe and generate random bits from quasars with redshifts z = 0.1−3.9. In addition, we formulate a mathematical model that quantifies the fidelity of the bits generated.
113

Electronic Structure and Stability of Ligated Superatoms and Bimetallic Clusters

Blades, William H 01 January 2016 (has links)
Quantum confinement in small metal clusters leads to a bunching of states into electronic shells reminiscent of shells in atoms. The addition of ligands can tune the valence electron count and electron distribution in metal clusters. A combined experimental and theoretical study of the reactivity of methanol with AlnIm− clusters reveals that ligands can enhance the stability of clusters. In some cases the electronegative ligand may perturb the charge density of the metallic core generating active sites that can lead to the etching of the cluster. Also, an investigation is conducted to understand how the bonding scheme of a magnetic dopant evolves as the electronic structure of the host material is varied. By considering VCun+, VAgn+, and VAun+ clusters, we find that the electronic and atomic structure of the cluster plays a major role in determining how an impurity will couple to its surroundings.
114

Isotropic Oscillator Under a Magnetic and Spatially Varying Electric Field

Frost, david L, Mr., Hagelberg, Frank 01 August 2014 (has links)
We investigate the energy levels of a particle confined in the isotropic oscillator potential with a magnetic and spatially varying electric field. Here we are able to exactly solve the Schrodinger equation, using matrix methods, for the first excited states. To this end we find that the spatial gradient of the electric field acts as a magnetic field in certain circumstances. Here we present the changes in the energy levels as functions of the electric field, and other parameters.
115

The Infrared Spectra of Mira Stars

Luttermoser, Donald G. 19 May 2014 (has links)
Over the past two decades, much has been learned about the atmospheric structure of the pulsating Mira-type variable stars from computer modeling and the analysis of ultraviolet and visible wavelength spectra. This talk reports on the first set of infrared spectra taken of these stars under high dispersion with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. A sample of 25 galactic Miras was observed in the 10-37 micron spectral regime anywhere from two to several times during their pulsation cycle. Many of the stars observed show marked changes in overall flux levels as a function of phase. We are able to identify many strong emission lines from neutral and singly ionized metals and emission features due to silicate and carbon dusts and molecular constituents. This work was financially supported through a NASA Spitzer grant for Program GO 50717.
116

High-Dispersion IR Spectroscopy of Mira Variables with the Spitzer IRS

Luttermoser, Donald G., Creech-Eakman, Michelle J., Gueth, Tina 01 January 2014 (has links)
Abstract available through American Astronomical Society.
117

First-Principles Atomistic Simulations of Energetic Materials

Landerville, Aaron Christopher 02 April 2014 (has links)
This dissertation is concerned with the understanding of physico-chemical properties of energetic materials (EMs). Recently, a substantial amount of work has been directed towards calculations of equations of state and structural changes upon compression of existing EMs, as well as elucidating the underlying chemistry of initiation in detonating EMs. This work contributes to this effort by 1) predicting equations of state and thermo-physical properties of EMs, 2) predicting new phases of novel EMs, and 3) examining the initial stages of chemistry that result in detonation in EMs. The motivation for the first thrust, is to provide thermodynamic properties as input parameters for mesoscale modeling. Such properties are urgently sought for a wide range of temperatures and pressures, and are often difficult or even impossible to obtain from experiment. However, thermo-physical properties are obtained by calculating structural properties and vibration spectra using density function theory and employing the quasi-harmonic approximation. The second thrust is directed towards the prediction and investigation of novel polymorphs of known azide compounds to identify precursor materials for synthesis of polymeric nitrogen EMs. Structural searches are used to identify new polymorphs, while theoretical Raman spectra for these polymorphs are calculated to aid experimentalists in identifying the appearance of these azide compounds under high pressure. The final thrust is concerned with elucidating the initial chemical events that lead to detonation through hypervelocity collision simulations using first-principles molecular dynamics. The chemical mechanisms of initiation are determined from the atomic trajectory data, while heats of reaction are calculated to quantify energy trends of chemical transformations.
118

Crystallographic Image Processing with Unambiguous 2D Bravais Lattice Identification on the Basis of a Geometric Akaike Information Criterion

Bilyeu, Taylor Thomas 02 July 2013 (has links)
Crystallographic image processing (CIP) is a technique first used to aid in the structure determination of periodic organic complexes imaged with a high-resolution transmission electron microscope (TEM). The technique has subsequently been utilized for TEM images of inorganic crystals, scanning TEM images, and even scanning probe microscope (SPM) images of two-dimensional periodic arrays. We have written software specialized for use on such SPM images. A key step in the CIP process requires that an experimental image be classified as one of only 17 possible mathematical plane symmetry groups. The current methods used for making this symmetry determination are not entirely objective, and there is no generally accepted method for measuring or quantifying deviations from ideal symmetry. Here, we discuss the crystallographic symmetries present in real images and the general techniques of CIP, with emphasis on the current methods for symmetry determination in an experimental 2D periodic image. The geometric Akaike information criterion (AIC) is introduced as a viable statistical criterion for both quantifying deviations from ideal symmetry and determining which 2D Bravais lattice best fits the experimental data from an image being processed with CIP. By objectively determining the statistically favored 2D Bravais lattice, the determination of plane symmetry in the CIP procedure can be greatly improved. As examples, we examine scanning tunneling microscope images of 2D molecular arrays of the following compounds: cobalt phthalocyanine on Au (111) substrate; nominal cobalt phthalocyanine on Ag (111); tetraphenoxyphthalocyanine on highly oriented pyrolitic graphite; hexaazatriphenylene-hexacarbonitrile on Ag (111). We show that the geometric AIC procedure can unambiguously determine which 2D Bravais lattice fits the experimental data for a variety of different lattice types. In some cases, the geometric AIC procedure can be used to determine which plane symmetry group best fits the experimental data, when traditional CIP methods fail to do so.
119

Searching for Clean Observables in $B -> D* /tau- \bar{\nu}_{\tau}$ Decays

Williams, Michael D, Jr. 01 January 2019 (has links)
In this thesis, the clean angular observables in the $\bar{B} \to D^{*+} \ell^- \bar{\nu}_{\ell}$ angular distribution is studied. Similar angular observables are widely studied in $B \to K^* \mu^+ \mu^-$ decays. We believed that these angular observables may have different sensitivities to different new physics structures.
120

Novel Materials for Use in Homeland Security Research

Young, Jason Osgood Ewen 01 May 2013 (has links)
Organometallic pyridazines and compounds derived from them have been of interest in polymer research due to their atypical environmental stability (as compared to other non-aromatic organic semiconductors) as well as their conductivity. The off-metal synthesis and characterization of several pyridazyl thallium, manganese, and rhenium complexes, beginning with fulvenes 1,2- C5H3(COHR)(COR), are reported here. The diacyl fulvenes were treated with hydrazine hydrate to ring close to pyridazines. Next, the pyridazines were converted to their respective thallium salts through treatment with thallium (I) ethoxide. Lastly, the salts were transmetallated into the respective rhenium or manganese complexes through treatment with the respective metal bound to five carbonyl groups and one bromide (MnCO5Br, ReCO5Br). Our research focused on the synthesis of a variety of 5,6-fused ring pyridazines that will act as a model for homeland security research in polymer studies and medicinal research. Synthesis and characterization of several aryl-substituted 5,6-fused ring pyridazines have been completed. The fulvenes, pyridazines, and thallium salts are important compounds for research due to their reactivity and stability in moisture and air. The complexes synthesized were confirmed using mass spectrometry, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and elemental analysis. Single crystal X-ray diffraction confirmed the structure of x compound 1A. As evidenced by related previous papers published by the research group, the synthesized complexes displayed stability to air, moisture, and temperature.18, 19, 23, 25

Page generated in 0.365 seconds