• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cuboids that Count: Photochemically mediated beam interactions for computing-inspired functionality in polymer materials

Mahmood, Fariha January 2023 (has links)
Self-trapped beams of light propagate while maintaining their initial intensity profile within a self-induced channel of high refractive index. When multiple self-trapped beams or filaments travel within the same medium, a diverse host of interactions are observed, including attraction, repulsion, fusion, annihilation, and birth. This thesis describes studies of interactions between large and small filament populations and/or beam-induced structures (waveguides) within polymer media. The understanding developed in this fundamental work was applied to design polymer cuboids – the cuboids that count – with computing-inspired functionality. First, the spontaneous self-organisation of randomly-seeded waveguides within a photopolymer material formed the basis of 3 operations: (i) data transfer; (ii) volumetric encoding; and (iii) binary arithmetic. The same material was used for 3D data storage using highly-intersecting waveguide lattices. The pursuit of enhanced capacity prompted an exploration of light coupling in waveguides with small angular separation and significant field of view overlap. Using multiple angled light sources, we successfully demonstrated single-step data writing and multiplexed data reading in these structures. Finally, we examined long-range interactions between 2 to 4 collinear beams within a spiropyran-functionalised hydrogel. The mechanism of refractive index increase in this medium – a light-induced volume contraction and expulsion of water – allowed beams to inhibit their neighbours’ self-trapping, with a clear relationship between number of neighbours and degree of inhibition. These observations were used to form the basis for an optical hydrogel NAND gate. / Thesis / Doctor of Philosophy (PhD)
2

Evaluating bacterial cell immobilization matrices for use in a biosensor

Fleming, Dara Lynn 07 January 2005 (has links)
A biosensor is proposed that contains bacteria that naturally effluxes potassium ions when threatened by electrophilic species. Pseudomonas aeruginosa is an activated sludge isolate and possesses the characteristic potassium efflux response. It has been immobilized in calcium alginate beads, photopolymer disks, and a thermally reversible gel in order to ultimately incorporate the immobilized system into a functional biosensor. The potassium efflux and cell viability were measured in the immobilized matrices. Wastewater treatment is of utmost importance; however, processes are easily upset. Upsets can be caused by various electrophiles found in the environment, and can cause serious health effects to people or the environment downstream from an upset. Electrophiles can cause the activated sludge in wastewater treatment facilities to deflocculate, and untreated water can be lost downstream. Devising a detection system for proactively sensing electrophiles prior to an upset is an important complementary goal. Immobilization systems have been evaluated including photopolymer coated alginate beads and sol gel coated alginate beads. The thermally reversible gel, NIPA-co-AAc (N-isopropylacrylamide-co-acrylic acid), shows promise as an immobilization matrix for the bacteria; however its high lower critical solution temperature (LCST) of ~33oC is problematic for typical, ambient applications. Another thermally reversible copolymer, N-isopropylacrylamide-co-N-acryloyl-6-amino caproic acid (NIPA-co-AcACA) was synthesized; however, it did not form a continuous matrix; making it useless as an immobilization scheme for biosensors. Alginate beads fall apart easily in bacteria media, but are structurally stable in potassium solutions. Cells immobilized in alginate beads seemed to efflux four times less potassium than did planktonic controls, while cells in thermally reversible gels effluxed a comparable amount of potassium as planktonic controls. This result may indicate a tighter matrix around the alginate immobilized cells, not allowing proper diffusion of potassium out of the matrix. / Master of Science
3

Návrh a realizace 3D tiskárny s vysokým rozlišením tisku / Design and realisation of 3D printer with high resolution of print

Peml, Luboš January 2014 (has links)
This thesis deals with the design and realisation of the stereolithographic 3D printer using DLP projector. The work describes the selection of suitable components for the printer´s mechanical construction and manufacturing of this construction, the solution of printer´s electronics and creation of the printer´s host software and firmware. Recommendations based on executed experiments for the parameters´ values settings have been given here.
4

Metallized printed microstructures for precision biomedical recording and stimulation

Gleick, Jeremy 04 June 2019 (has links)
Implantable electrodes are the central tool for many techniques and treatments in biomedical research and medicine. There is a trend in these tools towards arrays of tissue-penetrating microelectrodes with low geometric surface areas for purposes of both increasing the specificity of recording/stimulation and reducing tissue damage due to insertion trauma and reactive immune responses. However, smaller electrode sizes present new constraints – both difficulty in fabrication as well as significant limitations on effective charge storage/injection capacities as well as higher impedances, making smaller electrodes less capable of easily passing charge safely and efficiently. Fabricating structures on the scale of tens of microns and below poses significant challenges compared to well established machining at larger sizes. Established sets of techniques such as classic MEMS processes are limited to relatively specific shapes, with significant limitations in their ability to produce curved surfaces and surfaces which are not composed of highly distinct stepped layers. We developed a method for improvement of impedance and charge storage capacity of flat electrodes without affecting geometric surface area (footprint) using Resonant Direct Laser Writing (rDLW) 3D printing to fabricate high surface area 3D structures, which were then rendered conductive. The ability to perform DLW printing at a range of laser powers on opaque reflective surfaces is demonstrated, previously a known limitation of direct laser writing. This is demonstrated through a variety of example prints. This capability opens the door to many new possibilities in micron resolution polymer printing which were previously inaccessible, with potentially far reaching ramifications for microfabrication.
5

The Effects of Quantum Dot Nanoparticles on Polyjet Direct 3D Printing Process

Elliott, Amelia M. 18 March 2014 (has links)
Additive Manufacturing (AM) is a unique method of fabrication that, in contrast to traditional manufacturing methods, builds objects layer by layer. The ability of AM (when partnered with 3D scanning) to clone physical objects has raised concerns in the area of intellectual property (IP). To address this issue, the goal of this dissertation is to characterize and model a method to incorporate unique security features within AM builds. By adding optically detectable nanoparticles into transparent AM media, Physical Unclonable Function (PUFs) can be embedded into AM builds and serve as an anti-counterfeiting measure. The nanoparticle selected for this work is a Quantum Dot (QD), which absorbs UV light and emits light in the visible spectrum. This unique interaction with light makes the QDs ideal for a security system since the challenge (UV light) is a different signal from the response (the visible light emitted by the QDs). PolyJet, the AM process selected for this work, utilizes inkjet to deposit a photopolymer into layers, which are then cured with a UV light. An investigation into the visibility of the QDs within the printed PolyJet media revealed that the QDs produce PUF patterns visible via fluorescent microscopy. Furthermore, rheological data shows that the ink-jetting properties of the printing media are not significantly affected by QDs in sufficient concentrations to produce PUFs. The final objective of this study is to characterize the effects of the QDs on photocuring. The mathematical model to predict the critical exposure of the QD-doped photopolymer utilizes light scattering theory, QD characterization results, and photopolymer-curing characterization results. This mathematical representation will contribute toward the body of knowledge in the area of Additive Manufacturing of nanomaterials in photopolymers. Overall, this work embodies the first investigations of the effects of QDs on rheological characteristics of ink-jetted media, the effects of QDs on curing of AM photopolymer media, visibility of nanoparticles within printed AM media, and the first attempt to incorporate security features within AM builds. Finally, the major scientific contribution of this work is the theoretical model developed to predict the effects of QDs on the curing properties of AM photopolymers. / Ph. D.
6

Design and Fabrication of a Mask Projection Microstereolithography System for the Characterization and Processing of Novel Photopolymer Resins

Lambert, Philip Michael 17 September 2014 (has links)
The goal of this work was to design and build a mask projection microstereolithography (MPμSL) 3D printing system to characterize, process, and quantify the performance of novel photopolymers. MPμSL is an Additive Manufacturing process that uses DLP technology to digitally pattern UV light and selectively cure entire layers of photopolymer resin and fabricate a three dimensional part. For the MPμSL system designed in this body of work, a process was defined to introduce novel photopolymers and characterize their performance. The characterization process first determines the curing characteristics of the photopolymer, namely the Critical Exposure (Ec) and Depth of Penetration (Dp). Performance of the photopolymer is identified via the fabrication of a benchmark test part, designed to determine the minimum feature size, XY plane accuracy, Z-axis minimum feature size, and Z-axis accuracy of each photopolymer with the system. The first characterized photopolymer was poly (propylene glycol) diacrylate, which was used to benchmark the designed MPμSL system. This included the achievable XY resolution (212 micrometers), minimum layer thickness (20 micrometers), vertical build rate (360 layers/hr), and maximum build volume (6x8x36mm3). This system benchmarking process revealed two areas of underperformance when compared to systems of similar design, which lead to the development of the first two research questions: (i) 'How does minimum feature size vary with exposure energy?' and (ii) 'How does Z-axis accuracy vary with increasing Tinuvin 400 concentration in the prepolymer?' The experiment for research question (i) revealed that achievable feature size decreases by 67% with a 420% increase in exposure energy. Introducing 0.25wt% of the photo-inhibitor Tinuvin 400 demonstrated depth of penetration reduction from 398.5 micrometers to 119.7 micrometers. This corresponds to a decrease in Z-axis error from 119% (no Tinuvin 400) to 9% Z-axis error (0.25% Tinuvin 400). Two novel photopolymers were introduced to the system and characterized. Research question (iii) asks 'What are the curing characteristics of Pluronic L-31 how does it perform in the MPμSL system?' while Research Question 4 similarly queries 'What are the curing characteristics of Phosphonium Ionic Liquid and how does it perform in the MPμSL system?' The Pluronic L-31 with 2wt% photo-initiator had an Ec of 17.2 mJ/cm2 and a Dp of 288.8 micrometers, with a minimum feature size of 57.3 ± 5.7 micrometers, with XY plane error of 6% and a Z-axis error of 83%. Phosphonium Ionic Liquid was mixed in various concentrations into two base polymers, Butyl Diacrylate (0% PIL and 10% PIL) and Poly Ethylene Dimethacrylate (5% PIL, 15% PIL, 25% PIL). Introducing PIL into either base polymer caused the Ec to increase in all samples, while there is no significant trend between increasing concentrations of IL in either PEGDMA or BDA and depth of penetration. Any trends previously identified between penetration depth and Z accuracy do not seem to extend from one resin to another. This means that overall, among all resins, depth of penetration is not an accurate way to predict the Z axis accuracy of a part. Furthermore, increasing concentrations of PIL caused increasing % error in both XY plane and Z-axis accuracy . / Master of Science
7

Investigating The Performance Of 3-D Printed Sorbents For Direct Air Capture Of CO2

January 2020 (has links)
abstract: In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange resin (IER). The one-factor-at-a-time (OFAT) design-of-experiment approach was employed to determine the best combination ratio of materials to achieve high moisture swing and a good turnout of printed sorbents. The maximum load limit of the liquid photopolymer resin to enable printability of sorbents was found to be 44%. A series of moisture swing experiments was conducted to investigate the adsorption and desorption performance of the 3D-printed sorbents and compare them with the performance of IER samples prepared by a conventional approach. Results from these experiments conducted indicate that the printed sorbents showed less CO2 adsorptive characteristics compared to the conventional IER sample. It is proposed for future research that a liquid photopolymer resin made up of an IER be synthesized in order to improve the CO2-capturing ability of manufactured sorbents. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2020
8

Curing Characteristics of Photopolymer Resin With Dispersed Glass Microspheres in Vat Polymerization 3D Printing

Liang, Jingyu 07 July 2023 (has links)
The curing characteristics of photopolymer resin determine the relationship between the vat polymerization (VP) process parameters and the layer thickness, geometric accuracy, and surface quality of the 3D printed specimen. Dispersing filler material into the photopolymer resin changes its curing characteristics because the filler scatters and absorbs light, which modifies the curing reaction. However, the ability to cure photopolymer resin with high filler volume fraction is important to 3D print material specimens for specific engineering applications, e.g. structural polymer composite materials, electrical and thermal conductive materials, and ceramic materials for biological and high-temperature environments. We methodically measure the curing characteristics of diacrylate/epoxy photopolymer resin with dispersed glass microspheres. The experiments show that the curing depth, degree-of-cure, and surface roughness depend on both the light exposure dose and the filler fraction. We determine that the degree-of-cure increases with increasing filler fraction for constant exposure dose, and approaches 90% with increasing exposure dose, independent of the filler fraction. The geometric accuracy of the 3D printed specimens decreases with increasing exposure dose and with increasing filler volume fraction due to so-called profile broadening. Finally, we show that the average surface roughness of the 3D printed specimens decreases with increasing exposure dose and filler fraction. This work has implications for VP of photopolymer resins with high filler fraction. / Master of Science / Photopolymer resin is a gel-like liquid material that hardens (cures) into solid after absorbing light energy, and such a material is often used in the field of additive manufacturing (3D printing) to create complex geometry. Certain types of filler materials, such as metal powder or carbon fiber, can be added into the photopolymer resin to tailor the material properties, and thus, affects the curing behavior of photopolymer resin mixed with these filler materials. We conducted an experiment to understand how adding glass microspheres to a consumer grade photopolymer resin affects the process of creating 3D objects. This is important in the context of 3D printing engineered composite materials that derive their function from the organization and orientation of filler material in a matrix. To do this, we created many samples in the shape of a "VT" logo using the composite resin we made and measured their thickness (curing depth), degree-of-cure, surface roughness, and geometric accuracy, as a function of the amount of light energy being exposed to the resin (exposure dose) and the amount of the glass filler being added into the resin (filler fraction). We observed that when we increased the amount of light exposure, it resulted specimens that are thicker and more in degree of cure. Adding the glass filler to the liquid had mixed effects on the hardening process, because glass can scatter light and change how light travels within the resin. As a result, the printed objects became less accurate in shape and have smoother surface with increasing exposure dose and filler fraction, because more light is scattered off the designed curing profile and unintentionally cured the surrounding resin.
9

Stereolitografická tiskárna pro výrobu buněčného kultivačního zařízení / Stereolithographic printer for producing a cell culture device

Gricová, Monika January 2019 (has links)
Stereolithography printing is one of the most popular 3D printing technologies. This printers use a UV light source for photopolymer curing and can be used for a wide range of applications with high precision and excellent print quality. Commercially available printers do not allow the modifications of the optical and mechanical parameters of the instrument. For this reason, a DLP printer has been designed to allow the optical system modifications and thus changing the printing field and resolution. Another advantage is the possibility to modify already designed mechanical parts. The DLP printer has been designed and tested. The recommended printer parameters settings are listed, which are based on the performed experiments.
10

The Company of Animals: a Nontoxic Approach.

Boochard, Bonnie K. Foss 01 May 2001 (has links) (PDF)
This document investigates the concept of why man creates animal images and introduces the influences and focus of the artwork contained in the public exhibition. These original images focus on the similarities between animal and human personalities. Also included is a brief history of each "ink on paper" printmaking process used and a comparison of the results. All of the techniques discussed generally have a photographic process as their basis and use personal photographs and drawings for the foundation of each original print. In conclusion, areas for growth, enhancement, and future work are discussed, including a summary of the personal insights gained through the body of work. This thesis also supports the visual exhibition in the B. Carroll Reece Museum, East Tennessee State University, in fulfillment of the Master of Fine Arts degree.

Page generated in 0.0363 seconds