• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 460
  • 94
  • 78
  • 41
  • 24
  • 20
  • 19
  • 18
  • 12
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 962
  • 962
  • 839
  • 201
  • 150
  • 131
  • 121
  • 110
  • 102
  • 100
  • 94
  • 79
  • 76
  • 76
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Dielectric and mechanical properties of polymers at macro and nanoscale / Propriétés dielectriques et mecaniques des polymeres aux échelle macroscopiques et nanoscopique

Riedel, Clément 14 October 2010 (has links)
Le but de cette thèse était tout d'abord de comprendre les théories physiques qui décrivent la dynamique des polymères à l'échelle macroscopique. Le modèle de Rouse et la théorie d'enchevêtrement de De Gennes décrivent la dynamique des polymères non enchevêtrés et enchevêtrés, respectivement. Nous avons étudiés les différentes transitions entre ces deux régimes en utilisant deux techniques expérimentales: Broadband Dielectric Spectroscopy (BDS) et rhéologie. Les effets d'enchevêtrement sur les spectres diélectriques ont été discutés. Un test complet du modèle de Rouse à été effectué sur en comparant les prédictions de ce modèle pour la dépendance en fréquence de la permittivité diélectrique et du module de cisaillement aux données expérimentales. Ensuite nous avons développés des méthodes bas"s sur la microscopie à force électrostatique afin d'étudier les propriétés diélectriques locales. En utilisant la simulation numérique de la Méthode des Charges Equivalentes la constante diélectrique a été quantifiée à partir de la mesure du gradient de force crée par un potentiel statique entre une pointe et un diélectrique. Cette méthode permet d'imager la constante diélectrique avec une résolution spatial de 40 nm. Le retard de phase de la composante en 2ω de la force ou du gradient de force crée par un voltage alternatif est relié aux pertes diélectriques. En mesurant cette quantité nous avons montré que la dynamique était plus rapide proche d'une interface libre et nous avons développé un mode d'imagerie des pertes diélectriques. Cette méthode simple pourrait être appliqué en biologie ou matière molle en générale afin d'étudier des variations locales de constantes diélectriques. / The aim of this thesis was first to understand the physical theories that describe the dynamics of linear polymers at the macroscopic scale. Rouse and the reptational tube theory describe the large scale dynamics of unentangled and entangled polymers respectively. Using Broadband Dielectric Spectroscopy (BDS) and rheology we have studied the different transition between these two regimes. Effects of entanglement on dielectric spectra will be discussed (Rheologica Acta. 49(5):507-512). Avoiding the segmental relaxation contribution and introducing a distribution in the molecular weight we have been able to perform a comparison of the Rouse model with experiment dielectric and rheological data (Macromolecules 42(21): 8492-8499) Then we have developed EFM-based methods in order to study the local dynamics. Using the numerical simulation of the Equivalent Charge Method, the value of the static dielectric permittivity has been quantified from the measurement of the force gradient created by a VDC potential between a tip and a grounded dielectric (Journal of Applied Physics 106(2):024315). This method allows a quantitative mapping of dielectric properties with a 40 nm spatial resolution and is therefore suitable for the study of nano-defined domains (Physical Review E 81(1): 010801). The electrical phase lags in the 2ω components of the force or force gradient created by VAC voltage, ΔΦ2ω, are related with dielectric losses. Measuring the frequency dependence of ΔΦ2ω Crieder et al (Applied Physics Letters 91(1):013102) have shown that the dynamics at the near free surface of polymer films is faster than the one in bulk. We have used this method in order to visualize the activation of the segmental relaxation with temperature and frequency (Applied Physics Letters 96(21): 213110). All this measurements can be achieved using standard Atomic Force Microscope (and a lock-in) for VAC measurements.
182

Charakterizace adheze tenkých vrstev plazmových polymerů / Adhesion characterization of thin plasma-polymer films

Pálesch, Erik January 2010 (has links)
The diploma thesis deals with characterization of adhesion of plasma polymer films deposited on silicon wafers. The samples included organosilicon thin films based on tetravinylsilane monomer prepared by plasma-enhanced chemical vapour deposition. Scratch test was used to characterize film adhesion employing nanoindentation measurements. Adhesion of plasma polymer films of different mechanical properties and film thickness was analyzed by normal and lateral forces, friction coefficient, and scratch images obtained by scanning probe microscope working in atomic force microscopy mode.
183

Povrchové a mechanické vlastnosti tenkých vrstev / Surface and Mechanical Properties of Thin Films

Pálesch, Erik January 2014 (has links)
The doctoral thesis deals with the study of morphology and mechanical properties of thin plasma polymer films based on tetravinylsilane monomer and its mixtures with oxygen and argon. Thin films were prepared by plasma-enhanced chemical vapour deposition on silicon and glass substrates. Atomic force microscopy was used for characterization of thin film surface and for depiction of composite interphase with functional interlayer. Mechanical properties of thin films, namely Young’s modulus and hardness, were studied by cyclic nanoindentation technique. Nanoindentation device was also used to carry out scratch test, which was helpful to describe adhesion of films to substrate. In this thesis the influence of deposition conditions on surface and mechanical properties of thin films prepared in continual and pulse wave on planar substrates is discussed. Also, the suitability of few atomic force microscopy techniques for depiction of composite interphase was reviewed.
184

Photo Processing and Microfabrication of Graphene Oxide / 酸化グラフェンの光プロセシングと微細加工

Tu, Yudi 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21106号 / 工博第4470号 / 新制||工||1695(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 杉村 博之, 教授 邑瀬 邦明, 教授 山田 啓文 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
185

Probing Surface Charge Densities of Common Dielectrics

Alghonaim, Abdulmalik 07 1900 (has links)
The value of the surface charge density of polypropylene reported in literature has a three order of magnitude discrepancy. Nauruzbayeva et al report a 0.7nCcm−2 as the surface charge density of polypropylene as measured using the charge of electrified droplets[1]. Meagher and Craig reported result 111nCcm−2 as estimated by electric double layer theory from colloidal probe Atomic force microscopy (AFM) force spectroscopy [2]. We show that oxidation of hydrophobic surfaces as a potential mechanism in origin of these surface charges. Using colloidal probe AFM We measured the surface charge densities of Teflon AF, perfluorodecanethiol, Perfluorodecyltrichlorosilane(FDTS), Octadecyltrichlorosilane, polystyrene, and polypropylene. Also, The pH dependence of the surface charge density for FDTS was studied and it shows the behavior expected of a weak acid in response to pH. We suspect that the origin of the surface charges is mostly likely impurities or surface oxidation. We conclude that the electrometer and dispensed droplets approach cannot detect these charges because of the process of de-wetting all the surface be neutralized to maintain charge neutrality. This explanation supports Nauruzbayeva et al claims about surface bound charges[1].
186

Micromoulding: process measurements, product morphology and properties.

Whiteside, Benjamin R., Martyn, Michael T., Coates, Philip D., Greenway, G., Allen, P., Hornsby, P. January 2004 (has links)
No / The growth in Micro Electro-Mechanical Systems (MEMS) and demand for functional devices at smaller and smaller length scales has placed increasing demands on industry for product miniaturisation. Consequently, the micro-injection moulding (micromoulding) technology has evolved for the mass production of minute, intricate, polymer and composite components. Although there has been significant growth in the technology, there is little understanding of the effects of the process dynamics on product properties. This paper presents details of a programme of work conducted within these laboratories with the objectives of enhancing the understanding of polymer processing-property interaction. More particularly, the effects of microscale processing on the rheological, mechanical and tribological properties of engineering and commodity polymers, nanocomposites, metal and ceramic injection moulded feedstock and biomaterials are being explored. Simple analysis reveals that process conditions are potentially more severe on melts than those encountered during conventional moulding. High shear and rapid cooling rates combined with a large surface area to volume ratio may have a much greater influence over the resultant properties of a micromoulded product. A Battenfeld Microsystem50 micromoulding machine has been instrumented with a variety of sensors and data acquisition equipment, producing process data for a number of different cavity geometries. A novel microinjection compounding (MIC) machine has also been developed minimising the process stages and reducing material exposure to excessive residence times. This paper gives details of the effects of micromoulding process conditions on component surface morphology and mechanical properties measured using SEM, atomic force microscopy and nano-indentation techniques.
187

Commercial chemical vapor-deposited hexagonal boron nitride: how far is it from mechanically exfoliated-like quality?

Yuan, Yue 10 November 2022 (has links)
Two-dimensional (2D) layered hexagonal boron nitride (h-BN) has become a very popular material in nanoelectronics in recent years because of its extraordinary chemical stability and thermal conductivity [1]. Recently, h-BN is also commonly used as a dielectric material [2], and research in this area is still in its early stages. The commonly used methods for fabricating h-BN include mechanical exfoliation and chemical vapor deposition (CVD). CVD is a recognized industry-compatible method for producing large-area h-BN. However, studies have shown that multilayer h-BN grown by CVD is polycrystalline and contains multiple local defects [3]. These defects and inhomogeneity cannot be avoided and lead to small amounts of atom-wide amorphous regions that have weak dielectric strength [3]. Although the general characteristics of h-BN prepared by these two fabrication methods can be learned from different works in the literature, it is difficult to study the quality of h-BN without systematically comparing the differences between the two growth methods under the same experimental conditions and with large number of samples. This also makes it difficult for researchers to choose the best-quality h-BN. In this work, the morphological characteristics and electrical properties of mechanically exfoliated h-BN and CVD-grown h-BN from different sources have been compared under different conditions. Commercially available h-BN flakes mechanically exfoliated from NIMS h-BN bulk crystal show no leakage current at electrical fields up to 25.9 MV/cm, and above this applied electrical force, the size of the conductive spots is extremely small (1.99 ± 1.81 nm2). On the contrary, “monolayer” CVD-grown h-BN samples from Graphene Supermarket were shown to be amorphous in ~20% of their area, which makes them appear discontinuous from an electrical point of view, plus they contain large thickness fluctuations up to 6 layers. Moreover, in nanoelectronic measurements collected with a conductive atomic force microscope (CAFM) working in vacuum, mechanically exfoliated h-BN showed better electrical homogeneity and presented later dielectric breakdown compared to the h-BN samples fabricated by the CVD method.
188

IMAGING MEMBRANE PROTEINS USING ATOMIC FORCE MICROSCOPY TECHNIQUES

LAU, JOAN M. 24 September 2002 (has links)
No description available.
189

EXTRACTION OF NON-LINEAR MATERIAL PROPERTIES OF BIO-GELS USING ATOMIC FORCE MICROSCOPY

TRIPATHY, SAKYASINGH 27 September 2005 (has links)
No description available.
190

Dielectric Constant Measurements Using Atomic Force Microscopy System

Dhanapala, Hembathanthirige Yasas 18 September 2012 (has links)
No description available.

Page generated in 0.0415 seconds