• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 460
  • 94
  • 78
  • 41
  • 24
  • 20
  • 19
  • 18
  • 12
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 962
  • 962
  • 839
  • 201
  • 150
  • 131
  • 121
  • 110
  • 102
  • 100
  • 94
  • 79
  • 76
  • 76
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Growth of pentacene on parylene and on BCB for organic transistors application, and DNA-based nanostructures studied by Amplitude : Modulation Atomic Force Microscopy in air and in liquids

Iazykov, Maksym 22 June 2011 (has links) (PDF)
This work reports the various aspects of the application of atomic force microscopy (AFM), for the characterization of organic semiconductors and DNA-based arrays, for organic electronics and biological applications. On these soft surfaces, the amplitude modulation AFM mode was chosen. This choice is argued by a study of dissipative processes, performed on a particular sample, a DNA chip. We showed the influence of experimental parameters on the topographic and phase image quality. By calculating the dissipative energy, it was shown that the dissipation on the DNA chip was mainly induced by a viscoelastic tip-sample interaction.The AFM study of the "thickness-driven" pentacene growth was made to link the morphology to the nature of the substrate and to the electrical performance of created pentacene-based Organic Field Effect Transistor (OFET). Deposited on two polymer substrates, parylene and benzocyclobutene (BCB), pentacene has been characterized for nanoscale film thicknesses between 6 and 60nm. It has been shown that the larger grains were created for a deposited thickness of 30nm. Spectroscopic AFM mode was used as an alternative to the method of contact angles, to measure local surface energy. Decrease of surface energy is characteristic of a more ordered surface and was measured for a thickness of 30 nm of pentacene deposited on both substrates. Models of statistical analysis of spectral images, based on the Power Spectrum Distribution (PSD) have been used to explain the morphology of pentacene films. In addition, these models have provided a comprehensive description not only of the accessible surface of the sample, but also of its internal structural properties. Highlighted in the models, the critical thickness of 30 nm corresponds to a transition from the orthorhombic phase to the triclinic phase for pentacene molecules deposited on parylene. Similarly, a polymorphic transition occurs on the BCB. On OFETs, based on pentacene on BCB, the largest mobility of 3.1x10-2 cm²/Vs corresponds to the pentacene layer of 30nm, that shows a better ordering of the orthorhombic molecular packing in comparison with the triclinic packing.The molecular arrangement of X and Y structures based on DNA was observed, by AFM, in air and in two buffer solutions of Tris and HEPES on a mica substrate. It was shown that the treatment of the mica by Ni2 + ions increases the strength of the DNA/substrate interaction and reduces the diffusivity of the molecules. In air, wired macromolecules containing one double-stranded structure are observed on untreated mica and macromolecules with a 2D geometry on pretreated mica. Onto a non-treated, the greater thermal motion of weakly bounded to mica DNA molecules leads to the rupture of intermolecular bonding and the forming structures are more simple and not branched. The organization is different in solutions of Tris and HEPES. In the Tris solution, containing Mg2+ cations, the arrangement leads to a well-organized 2D architecture. In the HEPES solution, containing Ni2+ cations, the ionic strength is 10 times lower, this leads to a breaking of the bonds previously formed between DNA and mica. However, DNA molecules are near each other due to a partial substitution of already adsorbed Mg2 + cations by Ni 2 + cations of higher affinity with the mica. These results show that the two liquids promote a 2D assembly. In air, the networks are not stable and the few observed ones remain in a dendritic structure on the surface of pretreated mica and as a linear macromolecule on the untreated mica.
302

Dissecting contributions of structural elements of PSGL-1 to its interaction with P-selectin using AFM

Sánchez, René Javier 05 1900 (has links)
No description available.
303

Micromechanical Properties of the Extracellular and Pericellular Matrices of Articular Cartilage

Wilusz, Rebecca Elizabeth January 2013 (has links)
<p>The role of articular cartilage in diarthrodial joints is primarily mechanical as the tissue provides a nearly frictionless, load-bearing surface that supports and distributes forces generated during joint loading. Embedded within the extensive cartilage extracellular matrix (ECM), chondrocytes are surrounded by a narrow, distinct pericellular matrix (PCM) that is thought to regulate the biomechanical microenvironment of the cell and influence chondrocyte metabolism, cartilage homeostasis, and overall joint health. While previous studies of PCM mechanical properties required physical extraction of the cell and PCM from the tissue, atomic force microscopy (AFM) provides a means for high resolution microindentation testing that can be used to measure local mechanical properties in situ. This dissertation develops and applies AFM microindentation techniques to 1) evaluate the microscale elastic properties of the cartilage PCM and ECM in situ and 2) correlate site-specific biochemical composition with biomechanical properties of the PCM and ECM. </p><p>An AFM-based stiffness mapping technique was experimentally validated and applied to cartilage sections to evaluate ECM and PCM properties in situ with minimal disruption of native matrix integration. As expected, PCM elastic moduli were significantly less than ECM moduli, uniform with depth, and mechanically isotropic. ECM moduli exhibited distinct depth-dependent anisotropy and unexpectedly, were found to decrease with depth from the articular surface. Both the PCM and ECM exhibited alterations in microscale moduli and their spatial distributions when evaluated in cartilage presenting early degenerative changes associated with osteoarthritis (OA) as compared to healthy tissue. </p><p>The ability to correlate site-specific biochemical composition with local biomechanical properties provides a more complete characterization of the chondrocyte microenvironment. To this end, we developed novel immunofluorescence (IF)-guided AFM stiffness mapping and demonstrated that PCM mechanical properties correlate with the presence of type VI collagen. Extending this technique by using dual IF, we presented new evidence for a defining role of perlecan in the PCM, showing that interior regions of the PCM rich in perlecan and type VI collagen exhibit lower elastic moduli than peripheral PCM and ECM regions lacking perlecan. Furthermore, lower moduli at the PCM interior were significantly influenced by the presence of heparan sulfate. IF-guided AFM stiffness mapping was combined with enzymatic digestion to demonstrate that the micromechanical properties of the PCM exhibit high resistance to specific enzymatic digestion of aggrecan and aggrecan-associated glycosaminoglycans but are vulnerable to proteolytic degradation by leukocyte elastase. </p><p>Overall, this research generates new insights into the complex structural, compositional, and functional relationships between the cartilage ECM and PCM and provides the tools and framework for further studies to continue to investigate their importance in regulating chondrocyte physiology in health and disease.</p> / Dissertation
304

ATOMIC FORCE MICROSCOPY METHOD DEVELOPMENT FOR SURFACE ENERGY ANALYSIS

Medendorp, Clare Aubrey 01 January 2011 (has links)
The vast majority of pharmaceutical drug products are developed, manufactured, and delivered in the solid-state where the active pharmaceutical ingredient (API) is crystalline. With the potential to exist as polymorphs, salts, hydrates, solvates, and cocrystals, each with their own unique associated physicochemical properties, crystals and their forms directly influence bioavailability and manufacturability of the final drug product. Understanding and controlling the crystalline form of the API throughout the drug development process is absolutely critical. Interfacial properties, such as surface energy, define the interactions between two materials in contact. For crystal growth, surface energy between crystal surfaces and liquid environments not only determines the growth kinetics and morphology, but also plays a substantial role in controlling the development of the internal structure. Surface energy also influences the macroscopic particle interactions and mechanical behaviors that govern particle flow, blending, compression, and compaction. While conventional methods for surface energy measurements, such as contact angle and inverse gas chromatography, are increasingly employed, their limitations have necessitated the exploration of alternative tools. For that reason, the first goal of this research was to serve as an analytical method development report for atomic force microscopy and determine its viability as an alternative approach to standard methods of analysis. The second goal of this research was to assess whether the physical and the mathematical models developed on the reference surfaces such as mica or graphite could be extended to organic crystal surfaces. This dissertation, while dependent upon the requisite number of mathematical assumptions, tightly controlled experiments, and environmental conditions, will nonetheless help to bridge the division between lab-bench theory and successful industrial implementation. In current practice, much of pharmaceutical formulation development relies on trial and error and/or duplication of historical methods. With a firm fundamental understanding of surface energetics, pharmaceutical scientists will be armed with the knowledge required to more effectively estimate, predict, and control the physical behaviors of their final drug products.
305

FABRICATION AND CHARACTERIZATION OF MESOSCALE PROTEIN PATTERNS USING ATOMIC FORCE MICROSCOPY (AFM)

Gao, Pei 01 January 2011 (has links)
A versatile AFM local oxidation lithography was developed for fabricating clean protein patterns ranging from nanometer to sub-millimeter scale on octadecyltrichlorosilane (OTS) layer of Si (100) wafer. This protein patterning method can generate bio-active protein pattern with a clean background without the need of the anti-fouling the surface or repetitive rinsing. As a model system, lysozyme protein patterns were investigated through their binding reactions with antibodies and aptamers by AFM. Polyclonal anti-lysozyme antibodies and anti-lysozyme aptamer are found to preferentially bind to the lysozyme molecules on the edge of a protein pattern before their binding to the interior ones. It was also demonstrated that the topography of the immobilized protein pattern affects the antibody binding direction. We found that the anti-lysozyme antibodies binding to the edge lysozyme molecules on the half-buried pattern started from the top but the binding on the extruded pattern started from the side because of their different spatial accessibility. In addition, after incubating lysozyme pattern with anti-lysozyme aptamer in buffer solution for enough long time, some fractal-shaped aptamer fibers with 1-6nm high and up to tens of micrometers long were formed by the self-assembling of aptamer molecules on the surface. The aptamer fibers anchor specifically on the edge of protein patterns, which originates from the biospecific recognition between the aptamer and its target protein. Once these edge-bound fibers have formed, they can serve as scaffolds for further assembly processes. We used these aptamer fibers as templates to fabricate palladium and streptavidin nanowires, which anchored on the pattern edges and never cross over or collapse over each other. The aptamer fiber scaffold potentially can lead to an effective means to fabricate and interface nanowires to existing surface patterns.
306

Dynamics and mechanics of adherent cells in the context of environmental cues / Impact of substrate topology, chemical stimuli and Janus nanoparticles on cellular properties

Rother, Jan Henrik 11 June 2014 (has links)
No description available.
307

Controlled nanostructure fabrication using atomic force microscopy

Sapcharoenkun, Chaweewan January 2013 (has links)
Scanning probe microscopy (SPM) nanolithography has been found to be a powerful and low-cost approach for sub-100 nm patterning. In this thesis, the possibility of using a state-of-the-art SPM system to controllably deposit nanoparticles on patterned Si substrates with high positional control has been explored. These nanoparticles have a range of interesting properties and have been characterised by electron microscopy and scanning probe microscopy. The influence of different deposition parameters on the nanoparticle properties was studied. Contact mode atomic force microscopy (AFM)-based local oxidation nanolithography (LON) was used to oxidise sample surfaces. Two different substrates were studied which were native oxide silicon (Si) and molybdenum (Mo). A number of factors that influence the height and width of the oxide features were investigated in order to achieve the optimal oxidation efficiency. The height and width of the oxide structures were found to be strongly dependent on the applied voltage and scan speed. The tunneling AFM (TUNA) technique was used to measure the ultralow currents flowing between the tip and the sample during the oxidation process. It was found that a threshold voltage for our oxidation experiments was -4.0 ± 1.6 V applied to the tip when fabricating geometric patterns as well as 2.9 ± 1.6 V and 2.8 ± 2.2 V applied to the substrate for nanodot fabrication. In addition, comparisons of nanodot-array patterns produced with different AFM tips were studied. The influence of applied voltage, type of AFM tip and substrate, humidity and ramping time has been studied for dot formation providing a comparison between native oxide Si and Mo surfaces. The nanodot sizes were found to be clearly dependent on the applied voltage, type of substrate, relative humidity and ramping time. Dip-pen nanolithography (DPN) was used to study a direct deposition strategy for gold (Au) nanodot fabrication on a native oxide Si substrate. In this process, hydrogen tetrachloroaurate (HAuCl4) molecules were deposited onto the substrate via a molecular diffusion process, in the absence of electrochemical reactions. This approach allowed for the generation of Au dots on the SiO2 substrate without the need for surface modification or additional electrode structures. The dependence of the size of the Au dots on different „scanning coating‟ (SC) times of AFM tips was studied. A thermal annealing process was used to decompose the generated HAuCl4 molecular dots to leave Au (0) metal dots. A stereomicroscope has been used for preliminary observation of different steps of Au deposition treatments. A scanning electron microscope (SEM) was used to characterise the SC AFM tips both before and after the DPN process. SEM energy-dispersive X-ray spectroscopy (EDS) has provided information about the elemental content of deposited particles for different annealing temperatures. Fountain-pen nanolithography (FPN) has also been used to study nanowriting of HAuCl4 salt and a variety of solvents on a native oxide Si surface. In this technique, a nanopipette was mounted within an AFM to deliver appropriate solutions to the silica substrate. We found that an aqueous Au salt solution was the most suitable ink for depositing gold using the FPN technique. In the case of solvents alone, ethanol and toluene were achieved with depositing onto a SiO2 substrate using the FPN technique.
308

Synthesis & characterization of yttria stabilised zirconia (YSZ) hollow fibre support for Pd based membrane

Tshamano Matamela Bridget January 2013 (has links)
Inorganic based membranes which have a symmetric/asymmetric structure have been produced using an immersion induced phase inversion and sintering method. An organic binder solution (dope) containing yttria-stabilised zirconium (YSZ) particles is spun through a triple orifice spinneret to form a hollow fibre precursor, which is then sintered at elevated temperatures to form a ceramic support. The phase inversion process for the formation of hollow fibre membranes was studied in order to produce the best morphological structure/support for palladium based membranes. The spinning parameters, particle size, non-solvent concentration, internal coagulant as well as the calcination temperature were investigated in order to determine the optimum values. Sintering temperature was also investigated, which would yield a sponge-like structure with an optimized permeability, while retaining a smooth outer surface. The supports produced by phase inversion were characterized in terms of dimension by mercury porosimetry, compressed air permeability, Surface Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The morphology of the produced ceramic support showed either dense or porous characteristics governed by the dynamics of the phase inversion process. The particle size of YSZ was examined in order to decrease the amount of agglomerates in the spinning suspension. Zetasizer tests indicated that at 15 minutes, the ultrasonic bath effectively homogenised the YSZ particles and prohibited soft agglomerates from reforming in the spinning suspension. In this study, an increase in air gap had no noticeable effect on the finger like voids but it had a considerable effect on both the inner diameter (ID) and outer diameter (OD) of the green fibres, while an increase in bore liquid flow rate and extrusion pressure promoted viscous fingering and significant effect on the ID and OD of the fibres, respectively. There was a decrease in porosity and permeability with increasing sintering temperature, addition of water concentration in the spinning suspension and varying Nmethylpyrrolidone (NMP) aqueous solution of the internal coagulant. The amount of YSZ added to the starting suspension influenced the properties of the support structure. Viscous deformation was observed for dope with lower particle loading thus resulted in the formation of cracks and defects during sintering. / >Magister Scientiae - MSc
309

Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM).

Grant, Colin, A., Alfouzan, Abdulrahman, Twigg, Peter C., Coates, Philip D., Gough, Timothy D. 2012 June 1920 (has links)
Visco-elastic behaviour at the nano-level of a commonly used polymer (PET) is characterised using atomic force microscopy (AFM) at a range of temperatures. The modulus, indentation creep and relaxation time of the PET film (thickness = 100 m) is highly sensitive to temperature over an experimental temperature range of 22¿175 ¿C. The analysis showed a 40-fold increase in the amount of indentation creep on raising the temperature from 22 ¿C to 100 ¿C, with the most rapid rise occurring above the glass-to-rubber transition temperature (Tg = 77.1 ¿C). At higher temperatures, close to the crystallisation temperature (Tc = 134.7 ¿C), the indentation creep reduced to levels similar to those at temperatures below Tg. The calculated relaxation time showed a similar temperature dependence, rising from 0.6 s below Tg to 1.2 s between Tg and Tc and falling back to 0.6 s above Tc. Whereas, the recorded modulus of the thick polymer film decreases above Tg, subsequently increasing near Tc. These visco-elastic parameters are obtained via mechanical modelling of the creep curves and are correlated to the thermal phase changes that occur in PET, as revealed by differential scanning calorimetry (DSC).
310

Investigating Mechanotransduction and Mechanosensitivity in Mammalian Cells

Al-Rekabi, Zeinab 02 December 2013 (has links)
Living organisms are made up of a multitude of individual cells that are surrounded by biomolecules and fluids. It is well known that cells are highly regulated by biochemical signals; however it is now becoming clear that cells are also influenced by the mechanical forces and mechanical properties of the local microenvironment. Extracellular forces causing cellular deformation can originate from many sources, such as fluid shear stresses arising from interstitial or blood flow, mechanical stretching during breathing or compression during muscle contraction. Cells are able to sense variations in the mechanical properties (elasticity) of their microenvironment by actively probing their surroundings by utilizing specialized proteins that are involved in sensing and transmitting mechanical information. The actin cytoskeleton and myosin-II motor proteins form a contractile (actomyosin) network inside the cell that is connected to the extracellular microenvironment through focal adhesion and integrin sites. The transmission of internal actomyosin strain to the microenvironment via focal adhesion sites generates mechanical traction forces. Importantly, cells generate traction forces in response to extracellular forces and also to actively probe the elasticity of the microenvironment. Many studies have demonstrated that extracellular forces can lead to rapid cytoskeletal remodeling, focal adhesion regulation, and intracellular signalling which can alter traction force dynamics. As well, cell migration, proliferation and stem cell fate are regulated by the ability of cells to sense the elasticity of their microenvironment through the generation of traction forces. In vitro studies have largely explored the influence of substrate elasticity and extracellular forces in isolation, however, in vivo cells are exposed to both mechanical cues simultaneously and their combined effect remains largely unexplored. Therefore, a series of experiments were performed in which cells were subjected to controlled extracellular forces as on substrates of increasing elasticity. The cellular response was quantified by measuring the resulting traction force magnitude dynamics. Two cell types were shown to increase their traction forces in response to extracellular forces only on substrates of specific elasticities. Therefore, cellular traction forces are regulated by an ability to sense and integrate at least two pieces of mechanical information - elasticity and deformation. Finally, this ability is shown to be dependent on the microtubule network and regulators of myosin-II activity.

Page generated in 0.0913 seconds