Spelling suggestions: "subject:"1protein atterns"" "subject:"1protein 1atterns""
1 |
FABRICATION AND CHARACTERIZATION OF MESOSCALE PROTEIN PATTERNS USING ATOMIC FORCE MICROSCOPY (AFM)Gao, Pei 01 January 2011 (has links)
A versatile AFM local oxidation lithography was developed for fabricating clean protein patterns ranging from nanometer to sub-millimeter scale on octadecyltrichlorosilane (OTS) layer of Si (100) wafer. This protein patterning method can generate bio-active protein pattern with a clean background without the need of the anti-fouling the surface or repetitive rinsing.
As a model system, lysozyme protein patterns were investigated through their binding reactions with antibodies and aptamers by AFM. Polyclonal anti-lysozyme antibodies and anti-lysozyme aptamer are found to preferentially bind to the lysozyme molecules on the edge of a protein pattern before their binding to the interior ones. It was also demonstrated that the topography of the immobilized protein pattern affects the antibody binding direction. We found that the anti-lysozyme antibodies binding to the edge lysozyme molecules on the half-buried pattern started from the top but the binding on the extruded pattern started from the side because of their different spatial accessibility.
In addition, after incubating lysozyme pattern with anti-lysozyme aptamer in buffer solution for enough long time, some fractal-shaped aptamer fibers with 1-6nm high and up to tens of micrometers long were formed by the self-assembling of aptamer molecules on the surface. The aptamer fibers anchor specifically on the edge of protein patterns, which originates from the biospecific recognition between the aptamer and its target protein. Once these edge-bound fibers have formed, they can serve as scaffolds for further assembly processes. We used these aptamer fibers as templates to fabricate palladium and streptavidin nanowires, which anchored on the pattern edges and never cross over or collapse over each other. The aptamer fiber scaffold potentially can lead to an effective means to fabricate and interface nanowires to existing surface patterns.
|
2 |
Vers un marqueur biochimique des dégénérescences lobaires fronto-temporales : variations quantitatives et profils protéiques de la protéine TDP43 dans différentes matrices biologiques / Towards a biochemical marker of fronto temporal lobar degeneration : quantitative variations and qualitative patterns of TDP43 protein in different biological matricesFourier, Anthony 30 November 2018 (has links)
Les dégénérescences lobaires frontotemporales (DLFT) représentent la deuxième étiologie neurodégénérative chez l’adulte de moins de 65 ans. Les DLFT sont constituées d’un ensemble hétérogène de phénotypes cliniques et sont fréquemment héréditaires. Leurs particularités neuropathologiques communes reposent sur une atrophie des lobes frontaux et/ou temporaux associée à la présence d’inclusions de protéines agrégées parmi lesquelles la protéine TAR DNA binding protein 43 (TDP43). Actuellement, aucun marqueur protéique n’est validé pour diagnostiquer les DLFT du vivant du patient.Une cohorte de cas certains DLFT-TDP43 a été constituée grâce au développement d’outils spécifiques de diagnostic moléculaire. Une analyse des concentrations pondérales de protéine TDP43 dans le liquide cérébrospinal (LCS) a été réalisée dans cette cohorte, puis comparée à des cohortes bien caractérisées sur le plan clinique et neuropathologique. Finalement, les profils qualitatifs de la protéine TDP43 ont été étudiés dans différents compartiments accessibles du vivant du patient : les profils des formes solubles (LCS et plasma) et des formes intracellulaires (éléments figurés du sang) de la protéine TDP43 ont été comparés aux profils protéiques obtenus sur des tissus cérébraux présentant des inclusions de protéine TDP43. Les profils protéiques des culots plaquettaires présentent des similitudes avec le tissu cérébral et pourraient devenir un marqueur candidat pour le diagnostic probabiliste des DLFT / Frontotemporal lobar degeneration (FTLD) syndrome is the second most common of presenile dementia. FTLD is a clinically heterogeneous syndrome and comprises many hereditary cases. Common neuropathological features rely on a degeneration of the frontal and/or anterior temporal lobes, associated to specific inclusions of aggregated proteins including TAR DNA binding protein 43 (TDP43). Unfortunately, no practical protein marker is currently validated to improve FTLD diagnosis in living patients.A cohort of FTLD patients with definite TDP43 pathology was defined with the development of specific genetic testing. An analysis of TDP43 concentrations in cerebrospinal fluid (CSF) was performed in this cohort and then compared to other cohorts well-characterized on clinical and neuropathological features. Finally, qualitative patterns of TDP43 were studied in compartments accessible from the patient’s living: profiles of soluble TDP43 protein (in CSF or in plasma) and intracellular TDP43 protein (in the formed elements of blood) were compared to protein patterns observed in brain tissues with TDP43 protein inclusions. Platelet samples exhibit similar characteristics to brain tissue and could become a candidate biomarker for FTLD probabilistic diagnosis
|
3 |
Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor PatternsReuther, Cordula, Mittasch, Matthäus, Naganathan, Sundar R., Grill, Stephan, Diez, Stefan 07 September 2018 (has links)
Molecular motors, highly-efficient biological nano-machines, hold the potential to be employed for a wide range of nanotechnological applications. Towards this end, kinesin, dynein or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo attached to cytoskeletal filaments. Being able to flexibly control the direction of filament motion – in particular on planar, non-topographical surfaces – has, however, remained challenging. Here, we demonstrate the applicability of a UV-laser-based ablation technique to programmably generate highly-localized patterns of functional kinesin-1 motors with different shapes and sizes on PLL-g-PEG-coated polystyrene surfaces. Straight and curved motor tracks with widths of less than 500 nm could be generated in a highly-reproducible manner and proved to reliably guide gliding microtubules. Though dependent on track curvature, the characteristic travel lengths of the microtubules on the tracks significantly exceeded earlier predictions. Moreover, we experimentally verified the performance of complex kinesin-1 patterns, recently designed by evolutionary algorithms, for controlling the global directionality of microtubule motion on large-area substrates.
|
Page generated in 0.0462 seconds