• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 12
  • 4
  • 1
  • 1
  • Tagged with
  • 119
  • 119
  • 119
  • 52
  • 51
  • 48
  • 47
  • 46
  • 46
  • 45
  • 45
  • 45
  • 39
  • 39
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Ultracold Rydberg Atoms in Structured and Disordered Environments

Liu, Ivan Chen-Hsiu 03 November 2008 (has links)
The properties of a Rydberg atom immersed in an ultracold environment were investigated. Two scenarios were considered, one of which involves the neighbouring ground-state atoms arranged in a spatially structured configuration, while the other involves them distributed randomly in space. To calculate the influence of the multiple ground-state atoms on the Rydberg atom, Fermi-pseudopotential was used, which simplified greatly the numerical effort. In many cases, the few-body interaction can be written down analytically which reveals the symmetry properties of the system. In the structured case, we report the first prediction of the formation of ``Rydberg Borromean trimers''. The few-body interactions and the dynamics of the linear A-B-A trimer, where A is the ground-state atom and B is the Rydberg atom, were investigated in the framework of normal mode analysis. This exotic ultralong-range triatomic bound state exists despite that the Rydberg-ground-state interaction is repulsive. Their lifetimes were estimated using both quantum scattering calculations and semi-classical approximations which are found to be typically sub-microseconds. In the disordered case, the Rydberg-excitation spectra of a frozen-gas were simulated, where the nuclear degrees of freedom can be ignored. The systematic change of the spectral shape with respect to the density of the gas and the excitation of the Rydberg atom were found and studied. Some parts of the spectral shape can be described by simple scaling laws with exponents given by the basic properties of the atomic species such as the polarizability and the zero-energy electron-atom scattering length.
102

P-WAVE EFIMOV PHYSICS FOR THREE-BODY QUANTUM THEORY

Yu-Hsin Chen (14070930) 09 November 2022 (has links)
<p>    </p> <p><em>P</em>-wave Efimov physics for three equal mass fermions with different symmetries has been modeled using two-body interactions of Lennard-Jones potentials between each pair of Fermi atoms, and is predicted to modify the long range three-body interaction potential energies, but without producing a real Efimov effect. Our analysis treats the following trimer angular momenta and parities, L<sup>Π</sup> = 0<sup>+</sup>,1<sup>+</sup>,1<sup>−</sup> and 2<sup>−</sup>, for either three spin-up fermions (↑↑↑), or two spin-up and one spin-down fermion (↑↓↑). Our results for the long range behavior in some of those cases agree with previous work by Werner and Castin and by Blume <em>et al.</em>, namely in cases where the s-wave scattering length goes to infinity. This thesis extends those calculated interaction energies to small and intermediate hyperradii comparable to the van der Waals length, and considers additional unitarity scenarios where the p-wave scattering volume approaches infinity. The crucial role of the diagonal hyperradial adiabatic correction term is identified and characterized. For the equal mass fermionic trimers with two different spin components near the unitary limit are shown to possess a universal van der Waals bound or resonance state near s-wave unitarity, when p-wave interactions are included between the particles with equal spin. Our treatment uses a single-channel Lennard-Jones interaction with long range two-body van der Waals potentials. While it is well-known that there is no true Efimov effect that would produce an infinite number of bound states in the unitary limit for these fermionic systems, we demonstrate that another type of universality emerges for the symmetry L<sup>Π</sup> = 1<sup>−</sup>. The universality is a remnant of Efimov physics that exists in this system at p-wave unitarity, and it leads to modified threshold and scaling laws in that limit. Application of our model to the system of three lithium atoms studied experimentally by Du, Zhang, and Thomas [Phys. Rev. Lett. <strong>102</strong>, 250402 (2009)] yields a detailed interpretation of their measured three-body recombination loss rates. </p>
103

INTERFACE, PHASE CHANGE AND MOLECULAR TRANSPORT IN SUB, TRANS AND SUPERCRITICAL REGIMES FOR N-ALKANE/NITROGEN MIXTURES

Suman Chakraborty (13184898) 01 August 2022 (has links)
<p> Understanding the behavior of liquid hydrocarbon propellants under high pressure and temperature conditions is a crucial step towards improving the performance of modern-day combustion engines (liquid rocket engines, diesel engines, gas turbines and so on) and designing the next generation ones. Under such harsh thermodynamic conditions (high P&T) propellent droplets may experience anywhere from sub-to-trans-to-supercritical regime. The focus of this research is to explore the dynamics of the vapor-liquid two phase system formed by a liquid hydrocarbon fuel (n-heptane or n-dodecane) and ambient (nitrogen) over a wide range of P&T leading up to the mixture critical point and beyond. Molecular dynamics (MD) has been used as the primary tool in this research along with other tools like: phase stability calculations based on Gibb’s work, Peng Robinson equation of state, density gradient theory and neural networks.</p>
104

O operador de Wigner aplicado a colisões de mudança de estrutura fina entre átomos alcalinos no regime frio / The Wigner operator applied to fine-structure collisions between alkaline cold atoms

Braga, Helena Carolina 22 March 2002 (has links)
Neste trabalho abordamos os processos de perdas colisionais por mudança de estrutura fina e por escape radiativo. Estes processos são importantes por serem os principais fatores limitantes da densidade e da permanência de átomos confinados em armadilhas magneto-ópticas. A utilização do formalismo de Wigner nos possibilitou tratar a dinâmica dos graus de liberdade internos do sistema de forma puramente quântica, enquanto tratamos os graus de liberdade translacionais de maneira semiclássica. Com este formalismo deduzimos equações inéditas para uma colisão unidimensional e desenvolvemos um algoritmo, também inédito, para a resolução numérica de tais equações. / In this work we study the collision loss processes caused by fine-structure change and radiative escape. These processes are important because they limit the density and the confinement time of atoms in magneto-optical traps. The use of the Wigner-function formalism allows us to treat the internal degrees of freedom purely quantum mechanically, while treating the dynamics of the external degrees of freedom quasi-classically. This dissertation employs this formalism to derive for the first time, quasi-classical equations describing one-dimensional cold collisions, including dissipation due to spontaneous emission, and an algorithm, also for the first time, to solve numerically the mentioned set of coupled equations.
105

Etudes structurelles et dynamiques de systèmes atomiques ou moléculaires par génération d'harmoniques d'ordre élevé

Higuet, Julien 15 October 2010 (has links)
La génération d'harmoniques d'ordre élevé en milieu gazeux est un phénomène décrit par un modèle à trois étapes: sous l'effet d'un champ laser intense, un atome (ou une molécule) est ionisé par effet tunnel. L'électron éjecté est par la suite accéléré dans le champ laser, avant de se recombiner sur son ion parent en émettant un photon XUV. D'abord utilisée dans le but de développer des sources de rayonnement secondaire dans le domaine XUV, la génération d'harmoniques d'ordre élevé est également un bon candidat pour sonder la structure électronique des atomes ou des molécules, avec une résolution potentielle de l'ordre de l'attoseconde dans le domaine temporel (1 as=10-18 s) et sub-nanométrique dans le domaine spatial.Au cours des travaux réalisés pendant cette thèse, nous avons étudié la sensibilité des caractéristiques du rayonnement harmonique (amplitude, état de polarisation, phase) à la structure électronique du milieu de génération. Ces études ont été menées tout d'abord dans un milieu atomique couramment utilisé en génération d'harmonique, l'argon, puis dans des milieux moléculaires (N2, CO2, O2). La confrontation de ces mesures avec différentes simulations numériques montre la nécessité de modéliser de façon détaillée le processus de génération, dépassant certaines hypothèses généralement admises.Nous avons également montré la possibilité d'utiliser la spectroscopie d'harmoniques d'ordre élevé afin de mesurer des dynamiques moléculaires de systèmes complexes (notamment le dioxyde d'azote NO2), pour lesquelles les mesures harmoniques peuvent obtenir des résultats complémentaires aux autres techniques couramment utilisées. Dans le cas d'excitations moléculaires peu efficaces, nous avons pu adapter des techniques de spectroscopie optique conventionnelle au domaine spectral des harmoniques d'ordre élevé, améliorant de manière significative le rapport signal/bruit. / High harmonic generation is a well known phenomenon explained by a “three step” model: because of the high intensity field generated by an ultrashort laser pulse, an atom or a molecule can be tunnel ionized. The ejected electron is then accelerated by the intense electric field, and eventually can recombine on its parent ion, leading to the emission of a XUV photon. Because of the generating process in itself, this light source is a promising candidate to probe the electronic structure of atoms and molecules, with an attosecond/sub-nanometer potential resolution (1 as=10-18 s).In this work, we have studied the sensitivity of the emitted light (in terms of amplitude, but also phase and polarization) towards the electronic structure of the generating medium. We have first worked on atomic medium, then on molecules (N2, CO2, O2). Comparing the experimental results with numerical simulations shows the necessity to model finely the generation process and to go beyond commonly used approximations.We have also shown the possibility to perform high harmonic spectroscopy in order to measure dynamics of complex molecules, such as Nitrogen Dioxide (NO2). This technic has obtained complementary results compared to classical spectroscopy and has revealed dynamics of the electronic wavepacket along a conical intersection. In this experiment, we have adapted conventionnal optical spectroscopy technics to the XUV spectral area, which significantly improved the signal over noise ratio.
106

Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

Urban, Jeffry Todd January 2004 (has links)
Thesis (Ph.D.); Submitted to the University of California, Berkeley, CA (US); 21 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "LBNL--56768" Urban, Jeffry Todd. USDOE Director. Office of Science. Office of Basic Energy Sciences (US) 12/21/2004. Report is also available in paper and microfiche from NTIS.
107

Measurement of the beta-neutrino correlation in laser trapped {sup 21}Na

Scielzo, Nicholas David January 2003 (has links)
Thesis (Ph.D.); Submitted to Univ. of California, Berkeley, CA (US); 1 Jun 2003. / Published through the Information Bridge: DOE Scientific and Technical Information. "LBNL--54350" Scielzo, Nicholas David. USDOE Director. Office of Science. Nuclear Physics (US) 06/01/2003. Report is also available in paper and microfiche from NTIS.
108

Contrôle et mise en forme des fronts de phase et d'énergie

Chanteloup, Jean-Christophe 21 December 1998 (has links) (PDF)
Ce mémoire de thèse traite du contrôle et de la mise en forme des fronts de phase et d'énergie d'impulsions lasers brèves ultra-intenses.<br />La première partie est consacrée à la conception et la réalisation d'une boucle d'optique adaptative pour la correction des distorsions de surface d'onde sur la chaîne laser de puissance 100 Térawatts du Laboratoire pour l'Utilisation des Lasers Intenses. Cette boucle repose sur l'utilisation d'un dispositif à cristaux liquides comme modulateur de phase et d'un interféromètre à décalage comme senseur de front d'onde. L'association de ces deux dispositifs a permis la construction d'un système innovant de mesure et mise en forme de la surface d'onde d'impulsions lasers ultra-intenses. Il est démontré qu'il permet de corriger une surface d'onde présentant d'importantes distorsions et ainsi améliorer grandement la qualité de focalisation de faisceaux lasers. Cette boucle d'optique adaptative a été testée avec succès sur la chaîne 100 Térawatts et une correction de la surface d'onde de l'ordre de 60% a ainsi pu être démontrée.<br />La seconde partie du mémoire traite de la mise en forme d'une impulsion laser inhomogène brève permettant le pompage du milieu à gain (un plasma) d'un laser à rayons X. L'idée consiste à jouer sur le parallélisme du système de compression d'impulsions utilisé en fin de chaîne 100 Térawatts. Un modèle expliquant la génération d'une impulsion inhomogène laser brève à l'aide de ce compresseur à réseaux de diffraction est développé. Une campagne expérimentale Laser X a notamment permis de valider les prédictions théoriques annoncées par ce modèle et a montré la nécessité d'utiliser une telle impulsion inhomogène afin d'obtenir une émission laser X lorsque le pompage s'effectue par impulsion brève.
109

O operador de Wigner aplicado a colisões de mudança de estrutura fina entre átomos alcalinos no regime frio / The Wigner operator applied to fine-structure collisions between alkaline cold atoms

Helena Carolina Braga 22 March 2002 (has links)
Neste trabalho abordamos os processos de perdas colisionais por mudança de estrutura fina e por escape radiativo. Estes processos são importantes por serem os principais fatores limitantes da densidade e da permanência de átomos confinados em armadilhas magneto-ópticas. A utilização do formalismo de Wigner nos possibilitou tratar a dinâmica dos graus de liberdade internos do sistema de forma puramente quântica, enquanto tratamos os graus de liberdade translacionais de maneira semiclássica. Com este formalismo deduzimos equações inéditas para uma colisão unidimensional e desenvolvemos um algoritmo, também inédito, para a resolução numérica de tais equações. / In this work we study the collision loss processes caused by fine-structure change and radiative escape. These processes are important because they limit the density and the confinement time of atoms in magneto-optical traps. The use of the Wigner-function formalism allows us to treat the internal degrees of freedom purely quantum mechanically, while treating the dynamics of the external degrees of freedom quasi-classically. This dissertation employs this formalism to derive for the first time, quasi-classical equations describing one-dimensional cold collisions, including dissipation due to spontaneous emission, and an algorithm, also for the first time, to solve numerically the mentioned set of coupled equations.
110

Gas Phase Nonlinear and Ultrafast Laser Spectroscopy

Ziqiao Chang (17543487) 04 December 2023 (has links)
<p dir="ltr">The objective of this research is to advance the development and application of laser diagnostics in gas phase medium, which ranges from atmospheric non-reacting flows to turbulent reacting flows in high-pressure, high-temperature environments. Laser diagnostic techniques are powerful tools for non-intrusive and in-situ measurements of important chemical parameters, such as temperature, pressure, and species mole fractions, in harsh environments. These measurements significantly advance the knowledge across various research disciplines, such as combustion dynamics, chemical kinetics, and molecular spectroscopy. In this thesis, detailed theoretical models and experimental analysis are presented for three different techniques: 1. Chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS); 2. Two-color polarization spectroscopy (TCPS); 3. Ultrafast-laser-absorption-spectroscopy (ULAS). The first chapter provides a brief survey of laser diagnostics, including both linear and nonlinear methods. The motivations behind the three studies covered in this dissertation are also discussed. </p><p dir="ltr">In the second chapter, single-shot CPP fs CARS thermometry is developed for the hydrogen molecule at 5 kHz. The results are divided into two parts. The first part concentrates on the development of H<sub>2</sub> CPP fs CARS thermometry for high-pressure and high-temperature conditions. The second part demonstrates the application of H<sub>2</sub> CPP fs CARS in a model rocket combustor at pressures up to 70 bar. In the first part, H<sub>2</sub> fs CARS thermometry was performed in Hencken burner flames up to 2300 K, as well as in a heated gas-cell at temperatures up to 1000 K. It was observed that the H<sub>2</sub> fs CARS spectra are highly sensitive to the pump and Stokes chirp. Chirp typically originates from optical components such as windows and polarizers. As a result, the pump delay is modeled to provide a shift to the Raman excitation efficiency curve. With the updated theoretical model, excellent agreement was found between the simulated and experimental spectra. The averaged error and precision are 2.8% and 2.3%, respectively. In addition, the spectral phase and pump delay determined from the experimental spectra closely align with the theoretical predictions. It is also found that pressure does not have significant effects on the H<sub>2</sub> fs CARS spectra up to 50 bar at 1000 K. The collision model provides excellent agreement with the experiment. This allows the use of low-pressure laser parameters for high-pressure thermometry measurements. In the second part, spatially resolved H<sub>2</sub> temperature was measured in a rocket chamber at pressures up to 70 bar. This is the first demonstration of fs CARS thermometry inside a high-pressure rocket combustor. These results highlight the potential of using H<sub>2</sub> CPP fs CARS thermometry to provide quantitative data in high-pressure experiments for the study of combustion dynamics and model validation efforts at application relevant operating conditions.</p><p dir="ltr">The third chapter presents the development of a TCPS system for the study of the NO (<i>A</i><sup>2</sup>Σ<sup>+</sup>-<i>X</i><sup>2</sup>Π) state-to-state collision dynamics with He, Ar, and N<sub>2</sub>. Two sets of TCPS spectra for 1% NO, diluted in different buffer gases at 295 K and 1 atm, were obtained with the pump beam tuned to the R<sub>11</sub>(11.5) and <sup>O</sup>P<sub>12</sub>(1.5) transitions. The probe was scanned while the pump beam was tuned to the line center. Collision induced transitions were observed in the spectra as the probe scanned over transitions that were not coupled with the pump frequency. The strength and structure of the collision induced transitions in the TCPS spectra were compared between the three colliding partners. Theoretical TCPS spectra, calculated by solving the density matrix formulation of the time-dependent Schrödinger wave equation, were compared with the experimental spectra. A collision model based on the modified exponential-gap law was used to model the rotational level-to-rotational level collision dynamics. An unique aspect of this work is that the collisional transfer from an initial to a final Zeeman state was modeled based on the difference in the cosine of the rotational quantum number <i>J</i> projection angle with the z-axis for the two Zeeman states. Rotational energy transfer rates and Zeeman state collisional dynamics were varied to obtain good agreement between theory and experiment for the two different TCPS pump transitions and for the three different buffer gases. One key finding, in agreement with quasi-classical trajectory calculations, is that the spin-rotation changing transition rate in the <i>A</i><sup>2</sup>Σ<sup>+</sup> level of NO is almost zero for rotational quantum numbers ≥ 8. It was necessary to set this rate to near zero to obtain agreement with the TCPS spectra. </p><p dir="ltr">The fourth chapter presents the development and application of a broadband ULAS technique operating in the mid-infrared for simultaneous measurements of temperature, methane (CH<sub>4</sub>), and propane (C<sub>3</sub>H<sub>8</sub>) mole fractions. Single-shot measurements targeting the C-H stretch fundamental vibration bands of CH<sub>4</sub> and C<sub>3</sub>H<sub>8</sub> near 3.3 μm were acquired in both a heated gas cell up to ~650 K and laminar diffusion flames at 5 kHz. The average temperature error is 0.6%. The average species mole fraction error are 5.4% for CH<sub>4</sub>, and 9.9% for C<sub>3</sub>H<sub>8</sub>. This demonstrates that ULAS is capable of providing high-fidelity hydrocarbon-based thermometry and simultaneous measurements of both large and small hydrocarbons in combustion gases. </p>

Page generated in 0.0658 seconds