Spelling suggestions: "subject:"atomic cooling"" "subject:"automic cooling""
1 |
Single-photon atomic coolingPrice, Gabriel Noam 21 March 2011 (has links)
This dissertation details the development and experimental implementation of single-photon atomic cooling. In this scheme atoms are transferred from a large-volume magnetic trap into a small-volume optical trap via a single spontaneous Raman transition that is driven near each atom's classical turning point. This arrangement removes nearly all of an atomic ensemble's kinetic energy in one dimension. This method does not rely on a transfer of momentum from photon to atom to cool. Rather, single-photon atomic cooling achieves a reduction in temperature and an increase in the phase-space density of an atomic ensemble by the direct reduction of the system's entropy. Presented here is the application of this technique to a sample of magnetically trapped ⁸⁷Rb. Transfer efficiencies between traps of up to 2.2% are demonstrated. It is shown that transfer efficiency can be traded for increased phase-space compression. By doing so, the phase-space density of a magnetically trapped ensemble is increased by a factor of 350 by the single-photon atomic cooling process. / text
|
2 |
Etude du refroidissement laser d'atomes de césium 133 dans un champ de speckle 3D et réalisation d'une horloge atomique compacte / Study of 133 cesium atoms laser cooling in a 3D speckle field and development of a compact atomic clockTrémine, Stéphane 10 June 2016 (has links)
Le projet HORACE consiste en la réalisation d'une horloge atomique compacte de hautes performances exploitant le refroidissement laser d'atomes de 133Cs en "lumière isotrope", en visant principalement le marché des horloges embarquées. Afin d'obtenir un dispositif de faible encombrement, nous réalisons en un lieu unique l'ensemble des phases de la séquence d'horloge (refroidissement, préparation, interrogation et détection). Ceci est rendu possible grâce à l'utilisation d'une cavité d'interrogation à la fois résonnante à la fréquence de la transition d'horloge, et faisant office de sphère intégrante pour la lumière de refroidissement. L'essentiel du travail de thèse présenté ici est consacré à l'étude expérimentale du refroidissement dans le champ de speckle 3D généré à l’intérieur de cette cavité. En limitant le refroidissement à une simple phase de capture, environ 3x108 atomes sont refroidis à des températures cinétiques inférieures à 60 K. Nous montrons par ailleurs qu'une répartition inhomogène de l'énergie optique dans la cavité conduit à scinder la phase de refroidissement sub-Doppler en deux étapes. Malgré le caractère aléatoire de la polarisation entre « grains » de speckle adjacents, la dynamique du refroidissement en régime sub-Doppler que nous observons est identique à celle suivie par des atomes refroidis au sein d’un réseau optique conventionnel. La dernière partie de ce mémoire est consacrée à l’aspect métrologique du projet où la séquence complète de l’horloge est démontrée pour la 1ère fois dans une zone d’interaction unique. Une stabilité relative de fréquence de 2x10-13-1/2 est attendue pour un fonctionnement terrestre de l’horloge. / The HORACE project consists in the development of a high-performance compact atomic clock based on isotropic laser cooling of 133Cs atoms, targeting the needs for on-board clocks. In order to minimize the clock size, the entire clock sequence is performed inside one interaction zone only, including atomic cooling, preparation, interrogation and detection. This is made possible with a microwave interrogation cavity that is both resonant at the clock transition frequency, and used as an integrating sphere for the cooling light as well. This thesis work is mainly dedicated to the experimental study of the atomic cooling in the 3D speckle field generated inside the cavity. By limiting the cooling sequence to a capture phase, about 3x108 atoms can be cooled to kinetic temperatures lower than 60 microkelvins. Besides, we show that an inhomogeneous optical energy repartition in the cavity leads us to perform the sub-Doppler cooling phase in 2 steps. Despite random polarization change from one speckle grain to another, the atomic cooling dynamics observed in the sub-Doppler regime is similar to the one observed in conventional optical lattices. The last part of this thesis is devoted to the metrological aspect where the entire clock sequence is demonstrated for the first time at the same place. The fractional frequency stability of 2x10-13-1/2 should be reached on Earth.
|
Page generated in 0.0465 seconds