• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du refroidissement laser d'atomes de césium 133 dans un champ de speckle 3D et réalisation d'une horloge atomique compacte / Study of 133 cesium atoms laser cooling in a 3D speckle field and development of a compact atomic clock

Trémine, Stéphane 10 June 2016 (has links)
Le projet HORACE consiste en la réalisation d'une horloge atomique compacte de hautes performances exploitant le refroidissement laser d'atomes de 133Cs en "lumière isotrope", en visant principalement le marché des horloges embarquées. Afin d'obtenir un dispositif de faible encombrement, nous réalisons en un lieu unique l'ensemble des phases de la séquence d'horloge (refroidissement, préparation, interrogation et détection). Ceci est rendu possible grâce à l'utilisation d'une cavité d'interrogation à la fois résonnante à la fréquence de la transition d'horloge, et faisant office de sphère intégrante pour la lumière de refroidissement. L'essentiel du travail de thèse présenté ici est consacré à l'étude expérimentale du refroidissement dans le champ de speckle 3D généré à l’intérieur de cette cavité. En limitant le refroidissement à une simple phase de capture, environ 3x108 atomes sont refroidis à des températures cinétiques inférieures à 60 K. Nous montrons par ailleurs qu'une répartition inhomogène de l'énergie optique dans la cavité conduit à scinder la phase de refroidissement sub-Doppler en deux étapes. Malgré le caractère aléatoire de la polarisation entre « grains » de speckle adjacents, la dynamique du refroidissement en régime sub-Doppler que nous observons est identique à celle suivie par des atomes refroidis au sein d’un réseau optique conventionnel. La dernière partie de ce mémoire est consacrée à l’aspect métrologique du projet où la séquence complète de l’horloge est démontrée pour la 1ère fois dans une zone d’interaction unique. Une stabilité relative de fréquence de 2x10-13-1/2 est attendue pour un fonctionnement terrestre de l’horloge. / The HORACE project consists in the development of a high-performance compact atomic clock based on isotropic laser cooling of 133Cs atoms, targeting the needs for on-board clocks. In order to minimize the clock size, the entire clock sequence is performed inside one interaction zone only, including atomic cooling, preparation, interrogation and detection. This is made possible with a microwave interrogation cavity that is both resonant at the clock transition frequency, and used as an integrating sphere for the cooling light as well. This thesis work is mainly dedicated to the experimental study of the atomic cooling in the 3D speckle field generated inside the cavity. By limiting the cooling sequence to a capture phase, about 3x108 atoms can be cooled to kinetic temperatures lower than 60 microkelvins. Besides, we show that an inhomogeneous optical energy repartition in the cavity leads us to perform the sub-Doppler cooling phase in 2 steps. Despite random polarization change from one speckle grain to another, the atomic cooling dynamics observed in the sub-Doppler regime is similar to the one observed in conventional optical lattices. The last part of this thesis is devoted to the metrological aspect where the entire clock sequence is demonstrated for the first time at the same place. The fractional frequency stability of 2x10-13-1/2 should be reached on Earth.
2

Etude du déplacement collisionnel de la fréquence d'horloge du césium en présence du gaz tampon hélium ou xénon. Applications pour microcellules à haute température. / Study on collisional shift of cesium clock frequency in presence of helium or xenon buffer gas. Applications to high temperature microcells

Kroemer, Eric 08 July 2015 (has links)
Ce mémoire présente l'étude du déplacement collisionnel de la fréquence d'horloge du césium en présence du gaz tampon hélium ou xénon. L'introduction d'un gaz tampon dans les cellules à vapeur alcaline est nécessaire pour diminuer la largeur de raie de la résonance CPT par effet Dicke. Cependant, la présence de gaz tampon induit un déplacement quadratique de la fréquence d'horloge en fonction de la température de la cellule. Il est possible d'annuler la dépendance thermique du déplacement collisionnel en se plaçant à une température, dite d'inversion, déterminée par le ratio de gaz tampons introduits dans la cellule. Cette température est un point de fonctionnement de choix pour l'opération d'horloges atomiques miniatures et nécessite d'être de l'ordre de 90 voire 100 °C pour les applications à contraintes environnementales sévères. Nous avons mesuré les valeurs des coefficients de déplacement collisionnel de la fréquence d’horloge du césium en présence d’hélium et déterminé pour la première fois la valeur du coefficient quadratique en température. Concernant le xénon, les mesures des valeurs des coefficients de déplacement collisionnel sont incertaines en raison du caractère cubique non-attendu du déplacement collisionnel de la fréquence d’horloge du césium en présence de xénon. Ce comportement serait attribué à des interactions avec les molécules transitoires de van der Waals. Nous avons également établi qu'un mélange de gaz tampon néon-hélium permet d'obtenir des températures d'inversion supérieures à 80 °C. Des mesures dans des micro-cellules ont révélé des températures de l'ordre de 89 à 94 °C pour des mélanges à quelques pourcents d'hélium. / This thesis presents a study on collisional shift of cesium clock frequency in the presence of helium or xenon buffer gas. Introduction of buffer gas in alkaline vapour cells is necessary to narrow the CPT line-width by Dicke effect. Nevertheless, buffer gas induces a quadratic shift of the clock frequency versus temperature cell. Cancellation of collisional shift temperature dependence is possible at a so-called inversion temperature depending on the buffer gas ratio. This inversion temperature is great working point for micro atomic clocks. This temperature is required to be 90 or even 100 °C, especially to work in harsh environmental constraints. We measured collisional shift coefficients of cesium clock frequency in presence of helium buffer gas and we determined for the first time the value of the quadratic coefficient. About xenon buffer gas, the measurement of collisional shift coefficients is more difficult because of non-expected cubic behavior of collisional clock frequency shift which could be linked to the interaction with van der Waals molecules. We established that a neon-helium buffer gas mixture could allow an inversion temperature superior to more than 80 °C. Inversion temperatures from 89 to 94 °C are measured in cesium vapor microcells filled with a mixture containing a few percent of helium.

Page generated in 0.0138 seconds