• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous Beam of Laser-Cooled Ytterbium Atoms for Precision Measurements

Rathod, Ketan D January 2014 (has links) (PDF)
What if an elementary particle such as an electron had an intrinsic electric dipole moment (EDM)? Existence of such an EDM would be an indication of time-reversal symmetry violation in the laws of Physics. The Standard model of Physics is considered incomplete, and theories that go beyond the standard model predict existence of such EDM’s within experimental reach. Experiments that search for their existence serve as a test bed for these theories. Use of laser-cooled Yb atoms launched in a fountain for EDM search has been proposed earlier. This thesis describes the main experimental work on generating a continuous cold beam of Yb atoms using laser cooling. Such cold beams are ideal for performing EDM experiments and have several advantages over the more common pulsed fountain. We demonstrate two ways to achieve this (i) extracting the beam from atoms trapped in 2- dimensions and (ii) deflecting the atomic beam using 1D-optical molasses. We find that the latter method gives a longitudinal temperature of 41 mK, which is a factor of 3 better than the former one. We also demonstrate the implementation of Ramsey’s separated oscillatory field technique in a thermal beam to measure the larmor precession frequency with high precision. This serves as a first step towards implementation with cold beam. Extending the work reported here, we suggest future experiment for measuring an EDM.

Page generated in 0.1331 seconds