• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analýza zakončování útoku na ME 2012 ve fotbale / The analysis of finishing attacks in football at EURO 2012

Týč, Jan January 2013 (has links)
Title of project: The analysis of finishing attacks in football at EURO 2012 Aim of project: The aim of this thesis is to identify the most often and effective way of finishing attacks on EURO 2012 in chosen national teams, compare the results with the ones from WC 2010, identify characteristic models of finishing attacks and create a set of exercises for the training process. Methodology:Research was analyzed from indirect observation of video recordings of football matches from EURO 2012. Results: The most effective way of finishing is shooting from first or second touch within the penalty area. The identified models of finishing are combinations in front of the penalty area, intersection to the goal line with a back pass, passing the ball from the wing area in front of the penalty area, centre ball behind the line of defence and a vertical intersection pass behind the defence. Key words: football -shooting - Czech national team - Spain - Netherlands - finishing - attack - model
2

Towards evaluating security implementations using the Information Security Maturity Model (ISMM)

Alaboodi, Saad Saleh January 2007 (has links)
Information security is a common and ever-present concern for both private and public sector organizations. Information security protects information from a wide range of threats, risks, and vulnerabilities in order to ensure information availability, integrity and confidentiality, and hence business continuity. This research seeks to use a heuristic-based investigation of the Information Security Maturity Model (ISMM), developed by the author, combined with a thorough review of existing models, to suggest considerable extensions. This shall merit various applications leading to establish a connective body of knowledge and bridge a gap in existing literature and industry regarding the information security implementation in light of use of international standards and models. The ISMM model is neither based on a specific technology/protocol (e.g. PKI, IPSec, SSL) nor a certain system/product (e.g. Firewall, Antivirus, IDS), but rather an engineering approach towards a structured and efficient implementation of those technologies. The ISMM is a security-centric model that consists of five distinctive and ordered security layers, each of which has its own definition, scope, and characteristics. The model reflects the three key security processes (prevention, detection and recovery) and captures effects of people (visibility and sophistication) on every layer. It aims essentially to assess the maturity of any security implementation of any size and type (i.e. device, system, or environment). New extensions of the ISMM work are put forward. Literature review is augmented by introducing a new classification of information security models. Additionally, new abstractions are introduced, first: the abstraction of security conceptual boundaries, which signifies rational priorities and captures the unavoidable interferences between information and physical security in any security context, second: the abstraction of ratios of resources utilization (i.e. computational power, energy, memory, and other costs). Further extensions include a new attack model that classifies attacks in terms of their impact. This leads to a new approach for analyzing attacks and study adversary’s capabilities at different layers of both the ISMM and network models in the whole system, as one integrated entity against both single and hybrid attacks. As an example of one possible mapping and compatibility of the ISMM with other security-related models, the ISMM layers are mapped to their pertinent peers in network models (i.e. ISO/OSI and TCP/IP), which offers more information about security controls at each layer and its contribution to the actual overall security posture. The ISMM offers a prompt and structured approach to identify the current security state of small communication devices, computing platforms, and large computing environments in a consistent manner. A cost-effective realization is achieved through the optimization of IT and security expenditure. Therefore, the model assists to minimize deficiencies in security implementation. Also, the identification of needs and goals of the following level in the ISMM hierarchy allows a strategic approach proportional to allowable resources to take place, as a result, both goals are reached and cost is reduced much faster. This work is believed to facilitate grounds for future research endeavors such as applying these propositions on simulated examples, real life case studies, and developing a formula for the optimized distribution of security resources in a consistent manner with the best possible security level.
3

Towards evaluating security implementations using the Information Security Maturity Model (ISMM)

Alaboodi, Saad Saleh January 2007 (has links)
Information security is a common and ever-present concern for both private and public sector organizations. Information security protects information from a wide range of threats, risks, and vulnerabilities in order to ensure information availability, integrity and confidentiality, and hence business continuity. This research seeks to use a heuristic-based investigation of the Information Security Maturity Model (ISMM), developed by the author, combined with a thorough review of existing models, to suggest considerable extensions. This shall merit various applications leading to establish a connective body of knowledge and bridge a gap in existing literature and industry regarding the information security implementation in light of use of international standards and models. The ISMM model is neither based on a specific technology/protocol (e.g. PKI, IPSec, SSL) nor a certain system/product (e.g. Firewall, Antivirus, IDS), but rather an engineering approach towards a structured and efficient implementation of those technologies. The ISMM is a security-centric model that consists of five distinctive and ordered security layers, each of which has its own definition, scope, and characteristics. The model reflects the three key security processes (prevention, detection and recovery) and captures effects of people (visibility and sophistication) on every layer. It aims essentially to assess the maturity of any security implementation of any size and type (i.e. device, system, or environment). New extensions of the ISMM work are put forward. Literature review is augmented by introducing a new classification of information security models. Additionally, new abstractions are introduced, first: the abstraction of security conceptual boundaries, which signifies rational priorities and captures the unavoidable interferences between information and physical security in any security context, second: the abstraction of ratios of resources utilization (i.e. computational power, energy, memory, and other costs). Further extensions include a new attack model that classifies attacks in terms of their impact. This leads to a new approach for analyzing attacks and study adversary’s capabilities at different layers of both the ISMM and network models in the whole system, as one integrated entity against both single and hybrid attacks. As an example of one possible mapping and compatibility of the ISMM with other security-related models, the ISMM layers are mapped to their pertinent peers in network models (i.e. ISO/OSI and TCP/IP), which offers more information about security controls at each layer and its contribution to the actual overall security posture. The ISMM offers a prompt and structured approach to identify the current security state of small communication devices, computing platforms, and large computing environments in a consistent manner. A cost-effective realization is achieved through the optimization of IT and security expenditure. Therefore, the model assists to minimize deficiencies in security implementation. Also, the identification of needs and goals of the following level in the ISMM hierarchy allows a strategic approach proportional to allowable resources to take place, as a result, both goals are reached and cost is reduced much faster. This work is believed to facilitate grounds for future research endeavors such as applying these propositions on simulated examples, real life case studies, and developing a formula for the optimized distribution of security resources in a consistent manner with the best possible security level.
4

New Approaches to Distributed State Estimation, Inference and Learning with Extensions to Byzantine-Resilience

Aritra Mitra (9154928) 29 July 2020 (has links)
<div>In this thesis, we focus on the problem of estimating an unknown quantity of interest, when the information required to do so is dispersed over a network of agents. In particular, each agent in the network receives sequential observations generated by the unknown quantity, and the collective goal of the network is to eventually learn this quantity by means of appropriately crafted information diffusion rules. The abstraction described above can be used to model a variety of problems ranging from environmental monitoring of a dynamical process using autonomous robot teams, to statistical inference using a network of processors, to social learning in groups of individuals. The limited information content of each agent, coupled with dynamically changing networks, the possibility of adversarial attacks, and constraints imposed by the communication channels, introduce various unique challenges in addressing such problems. We contribute towards systematically resolving some of these challenges.</div><div><br></div><div>In the first part of this thesis, we focus on tracking the state of a dynamical process, and develop a distributed observer for the most general class of LTI systems, linear measurement models, and time-invariant graphs. To do so, we introduce the notion of a multi-sensor observable decomposition - a generalization of the Kalman observable canonical decomposition for a single sensor. We then consider a scenario where certain agents in the network are compromised based on the classical Byzantine adversary model. For this worst-case adversarial setting, we identify certain fundamental necessary conditions that are a blend of system- and network-theoretic requirements. We then develop an attack-resilient, provably-correct, fully distributed state estimation algorithm. Finally, by drawing connections to the concept of age-of-information for characterizing information freshness, we show how our framework can be extended to handle a broad class of time-varying graphs. Notably, in each of the cases above, our proposed algorithms guarantee exponential convergence at any desired convergence rate.</div><div><br></div><div>In the second part of the thesis, we turn our attention to the problem of distributed hypothesis testing/inference, where each agent receives a stream of stochastic signals generated by an unknown static state that belongs to a finite set of hypotheses. To enable each agent to uniquely identify the true state, we develop a novel distributed learning rule that employs a min-protocol for data-aggregation, as opposed to the large body of existing techniques that rely on "belief-averaging". We establish consistency of our rule under minimal requirements on the observation model and the network structure, and prove that it guarantees exponentially fast convergence to the truth with probability 1. Most importantly, we establish that the learning rate of our algorithm is network-independent, and a strict improvement over all existing approaches. We also develop a simple variant of our learning algorithm that can account for misbehaving agents. As the final contribution of this work, we develop communication-efficient rules for distributed hypothesis testing. Specifically, we draw on ideas from event-triggered control to reduce the number of communication rounds, and employ an adaptive quantization scheme that guarantees exponentially fast learning almost surely, even when just 1 bit is used to encode each hypothesis. </div>
5

Évaluation dynamique de risque et calcul de réponses basés sur des modèles d’attaques bayésiens / Dynamic risk assessment and response computation using Bayesian attack models

Aguessy, François-Xavier 22 September 2016 (has links)
Les systèmes d'information sont une cible de plus en plus attractive pour les attaquants. Dans cette thèse de doctorat, nous construisons une méthodologie complète d'analyse statique et dynamique de risque prenant en compte la connaissance à priori d'un système avec les événements dynamiques, afin de proposer des réponses permettant d'empêcher les attaques futures. Tout d'abord, nous étudions comment corriger les attaques potentielles qui peuvent arriver dans un système, en s'appuyant sur les graphes d'attaque logiques. Nous proposons une méthodologie de remédiation corrigeant les chemins d'attaque les plus significatifs. Les remédiations candidates sont classées en fonction de leur coût opérationnel et leur impact sur le système. Les graphes d'attaques ne peuvent pas être directement utilisés pour l'évaluation dynamique de risque. Nous étendons donc ce modèle pour construire des modèles d'analyse dynamique de risque basés sur des réseaux bayésiens. Le modèle hybride d'évaluation de risque se divise en deux modèles complémentaires: (1) Les modèles de corrélation de risque, permettant d'analyser les attaques en cours et fournir les probabilités de compromission des états du système, (2) les modèles d'évaluation du risque futur, permettant évaluer les attaques futures les plus probables. Nous analysons la sensibilité des paramètres probabilistes du modèle et en validons les résultats à partir de graphes d'attaque topologiques / Information systems constitute an increasingly attractive target for attackers. Given the number and complexity of attacks, security teams need to focus their actions, in order to select the most appropriate security controls. Because of the threat posed by advanced multi-step attacks, it is difficult for security operators to fully cover all vulnerabilities when deploying countermeasures. In this PhD thesis, we build a complete framework for static and dynamic risk assessment including prior knowledge on the information system and dynamic events, proposing responses to prevent future attacks. First, we study how to remediate the potential attacks that can happen in a system, using logical attack graphs. We build a remediation methodology to prevent the most relevant attack paths extracted from a logical attack graph. In order to help an operator to choose between several remediation candidates, we rank them according to a cost of remediation combining operational and impact costs. Then, we study the dynamic attacks that can occur in a system. Attack graphs are not directly suited for dynamic risk assessment. Thus, we extend this mode to build dynamic risk assessment models to evaluate the attacks that are the most likely. The hybrid model is subdivided in two complementary models: (1) the first ones analysing ongoing attacks and provide the hosts' compromise probabilities, and (2) the second ones assessing the most likely future attacks. We study the sensitivity of their probabilistic parameters. Finally, we validate the accuracy and usage of both models in the domain of cybersecurity, by building them from a topological attack graph
6

Protection des systèmes informatiques contre les attaques par entrées-sorties / Protecting Computer Systems against Input/Output Attacks

Lone Sang, Fernand 27 November 2012 (has links)
Les attaques ciblant les systèmes informatiques vont aujourd'hui au delà de simples logiciels malveillants et impliquent de plus en plus des composants matériels. Cette thèse s'intéresse à cette nouvelle classe d'attaques et traite, plus précisément, des attaques par entrées-sorties qui détournent des fonctionnalités légitimes du matériel, tels que les mécanismes entrées-sorties, à différentes fins malveillantes. L'objectif est d'étudier ces attaques, qui sont extrêmement difficiles à détecter par des techniques logicielles classiques (dans la mesure où leur mise en oeuvre ne nécessite pas l'intervention des processeurs) afin de proposer des contre-mesures adaptées, basées sur des composants matériels fiables et incontournables. Ce manuscrit se concentre sur deux cas : celui des composants matériels qui peuvent être délibérément conçus pour être malveillants et agissants de la même façon qu'un programme intégrant un cheval de Troie ; et celui des composants matériels vulnérables qui ont été modifiés par un pirate informatique, localement ou au travers du réseau, afin d'y intégrer des fonctions malveillantes (typiquement, une porte dérobée dans son firmware). Pour identifier les attaques par entrées-sorties, nous avons commencé par élaborer un modèle d'attaques qui tient compte des différents niveaux d'abstraction d'un système informatique. Nous nous sommes ensuite appuyés sur ce modèle d'attaques pour les étudier selon deux approches complémentaires : une analyse de vulnérabilités traditionnelle, consistant à identifier une vulnérabilité, développer des preuves de concept et proposer des contre-mesures ; et une analyse de vulnérabilités par fuzzing sur les bus d'entrées-sorties, reposant sur un outil d'injection de fautes que nous avons conçu, baptisé IronHide, capable de simuler des attaques depuis un composant matériel malveillant. Les résultats obtenus pour chacunes de ces approches sont discutés et quelques contre-mesures aux vulnérabilités identifiées, basées sur des composants matériels existants, sont proposées / Nowadays, attacks against computer systems may involve hardware components in order to bypass the numerous countermeasures against malicious software. This PhD thesis focuses on this novel class of attacks and specifically deals with Input/Output attacks. In such attacks, attackers divert legitimate hardware features, such as I/O mechanisms, to achieve different malicious actions. Since detecting such attacks by conventional software techniques is not easy (as far as they do not require the intervention of the CPU), we have analyzed these attacks in order to propose appropriate countermeasures based mainly on reliable and unavoidable hardware components. This manuscript focuses on two cases : hardware components that can be deliberately designed to be malicious and acting in the same way as a program incorporating a Trojan horse ; and vulnerable hardware components that have been modified by a hacker, either locally or through the network, to include malicious functions (typically a backdoor in the firmware). To identify the potential I/O attacks, we developed an attack model which takes into account the different abstraction levels in a computer system. Then, we studied these attacks with two complementary approaches : the classical approach to vulnerability analysis consisting in identifying a vulnerability, developing a proof-of-concept and proposing countermeasures ; and fuzzing-based vulnerability analysis, using IronHide, a fault injection tool we have designed, which is able to simulate a powerful malicious hardware. The results obtained with both approaches are discussed and several countermeasures to the vulnerabilities we identified, based on existing hardware components, are proposed

Page generated in 0.0538 seconds