• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 13
  • 12
  • 12
  • 12
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ATR-FTIR spectroscopy and Raman microscopy studies of organosilane diffusion and hydrolysis in PVC films

Eaton, Peter Jonathan January 1998 (has links)
Organosilanes are widely used to bond organic materials such as polymers to inorganic materials in polymer composites. However, the mechanism of adhesion is poorly understood. One postulated mechanism is the interdiffusion of the silane and polymer, along with condensation of the silane to form an interpenetrating polymer network (IPN). The techniques of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman confocal microscopy have been used to study the diffusion, hydrolysis and condensation of three organosilanes in silicon / PVC / silane laminates. These processes are thought to contribute to the formation of the IPN, and hence to be vital for adhesion. The organosilanes studied were [3-(amino)propyl]trimethoxysilane, also known as A1110, [3-(phenylamino)propyl]trimethoxysilane, known as Y9669, and [3-(mercapto)propyl]triethoxysilane, known as A1891.ATR-FTIR was shown to be an excellent technique for studying the kinetics of silane diffusion through PVC films. It was shown that at room temperature, no diffusion through unplasticised PVC films occurred. At 70 °C, however, diffusion occurred readily for Y9669 and A1891. In plasticised PVC films, diffusion was observed for all three silanes at room temperature. It was shown that the diffusion occurred more quickly with higher plasticiser concentrations, and hence lower glass transition temperatures. The kinetics of diffusion was found to fit a dual mode sorption model. Hydrolysis of the silanes was also followed by infrared spectroscopy, and the kinetics of hydrolysis and condensation were shown to be highly dependent upon silane type, the concentration of water, and the presence of an acid catalyst. The hydrolysis of the silanes was found to slow their diffusion through both plasticised and unplasticised PVC films. It was shown that the presence of water in the films caused the hydrolysis of the silanes in situ. Raman depth profiles were measured of the films before, during and after diffusion. The spatial resolution was shown to be adversely affected by refraction at the air / PVC interface. It was shown that it is possible to deconvolve the confocal response of the microscope from the depth profiles, resulting in greater spatial resolution. Hydrolysis of the silanes was followed in solution by Raman spectroscopy, and it was found that each of the three silanes showed different rates of hydrolysis and condensation. It was shown that it was also possible to follow the kinetics of diffusion by Raman microscopy, and the results agreed well with those shown by ATR-FTIR spectroscopy.
2

Investigations in Quantitative Infrared Using Attenuated Total Reflectance

Tisinger, Louis J. January 2002 (has links)
No description available.
3

Arson Accelerant Analysis by Attenuated Total Reflectance Spectroscopy

Ray, Stephen P. January 1998 (has links)
No description available.
4

Fourier transform infrared microspectroscopy, with attenuated total reflectance, as a detection method for fusarium in whole wheat kernels

Starr, Karen 24 September 2012 (has links)
The purpose of this study was to investigate the feasibility of using Fourier transform mid-infrared (FT-IR) microspectroscopy, with attenuated total reflectance (ATR), to detect the presence of Fusarium spp., classify differences in ability to detect Fusarium spp. among the Canadian soil zones, determine whether Fusarium spp. can serve as an indicator for the concentration of deoxynivalenol (DON), and develop an equation that can predict DON within wheat kernels. Canadian Western Red Spring wheat kernels were pressed against an ATR crystal to obtain spectra. Five chemical functional groups were investigated. The ability of FT-IR-ATR microspectroscopy to detect the presence of Fusarium spp. was confirmed. The chemical composition, and the ability to identify Fusarium spp., differed in kernels grown among the soil zones. Several methods to use Fusarium spp. as an indicator for the concentration of DON content within the wheat kernels were attempted and found to be unsuccessful.
5

Fourier transform infrared microspectroscopy, with attenuated total reflectance, as a detection method for fusarium in whole wheat kernels

Starr, Karen 24 September 2012 (has links)
The purpose of this study was to investigate the feasibility of using Fourier transform mid-infrared (FT-IR) microspectroscopy, with attenuated total reflectance (ATR), to detect the presence of Fusarium spp., classify differences in ability to detect Fusarium spp. among the Canadian soil zones, determine whether Fusarium spp. can serve as an indicator for the concentration of deoxynivalenol (DON), and develop an equation that can predict DON within wheat kernels. Canadian Western Red Spring wheat kernels were pressed against an ATR crystal to obtain spectra. Five chemical functional groups were investigated. The ability of FT-IR-ATR microspectroscopy to detect the presence of Fusarium spp. was confirmed. The chemical composition, and the ability to identify Fusarium spp., differed in kernels grown among the soil zones. Several methods to use Fusarium spp. as an indicator for the concentration of DON content within the wheat kernels were attempted and found to be unsuccessful.
6

Exfoliation and Air Stability of Germanane

Butler, Sheneve 06 August 2013 (has links)
No description available.
7

Improvements in nutritive value of canola meal with pelleting

2015 February 1900 (has links)
Production of and demand for Canadian canola meal have been increased yearly. In order to improve the competitiveness of canola meal domestically and internationally, as well as to develop potential markets for canola meal, it is necessary to develop canola meal-based products that have high feed values and can be easily transported. The objectives of this research were: 1) to investigate the effects of temperature and time of conditioning during pelleting process on the nutritive values of canola meal in terms of chemical profiles, protein and carbohydrate subfractions, and energy values, using the AOAC procedures, CNCPS v6.1 and NRC (2001), respectively; 2) to detect the effects of temperature and time of conditioning during the pelleting process on rumen degradation and intestinal digestion characteristics and predicted protein supply of canola meal, using the in situ procedure, the three-step in vitro procedure, and the NRC 2001 model; and 3) to determine pelleting-induced changes in spectral characteristics of molecular structures of canola meal using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) with univariate and multivariate analysis, and reveal the relationship between molecular structures of protein and carbohydrate and nutrient values, rumen degradation and intestinal digestion characteristics, and predicted protein supply of canola meal. Three different conditioning temperatures (70, 80 and 90ºC) and two different conditioning time (50 and 75 sec) were applied in this research. Two different batches of canola meal from a commercial feed company were selected. A randomized complete block design (RCBD) with 3 × 2 factorial arrangement was employed in this research. Molecular spectral functional groups related to protein, cellulosic compounds, and carbohydrates were used in the spectral study. This research indicated: 1) soluble crude protein (SCP) was decreased and neutral detergent insoluble CP (NDICP) was increased with increasing temperature; 2) the lowest protein rumen degradation of pellets was observed at conditioning temperature of 90 ºC and protein rumen degradation was increased by pelleting; 3) the amount of protein digested in the small intestine tended to increase with increasing conditioning temperature; 4) pelleting under different temperatures and time in the current study shifted the protein digestion site to the rumen, rather than to the small intestine; 5) with respect to predicted protein supply, based on the NRC 2001 model, increasing conditioning temperature tended to increase the metabolizable protein supply of canola meal pellets to dairy cattle; 6) changes in the molecular structure of canola meal induced by pelleting can be detected by ATR-FTIR; 7) not only protein molecular structure characteristics but also carbohydrate molecular structure characteristics play important roles in determining nutrient values, rumen degradation and intestinal digestion characteristics, and the predicted protein supply of canola meal.
8

Compositional gradients in photopolymer films utilizing kinetic driving forces

Cook, Clinton John 01 July 2014 (has links)
Independent control of the surface and bulk properties is advantageous for many applications such as adhesives, release coatings, and antimicrobial films. Traditional methods for achieving independent control typically require multiple processing steps such as wet-on-wet or wet-on-dry coating methods. Independent control over the surface properties can achieved in a single step utilizing the temporal and spatial control inherent to photopolymerization. Specifically, a co-photopolymerization of monomers with different reactivities in the presence of a light gradient is capable of producing a polymer film with a surface chemistry that differs from the bulk chemistry. The light gradient, produced via the concentration of photoinitiator in the formulation, results in a reaction gradient through the film with the higher rates of reaction occurring in the high light intensity regions of the film. The preferentially reacting monomer adds at a greater rate in the high light intensity regions resulting in non-uniform consumption yielding a concentration gradient. Consequently, diffusion of the preferentially reacting monomer from the bulk to the surface of the film and a counter-diffusion of the other monomer from the surface to the bulk of the film occurs from the non-uniform monomer consumption thus producing a film with a concentration gradient through the depth of the film with the preferentially reacting monomer enriching the high light intensity regions. A variety of kinetic differences capable of producing a stratified film will be presented including inherent monomer reactivity, number of functional groups per monomer, oxygen inhibition, thiol-ene chemistry, and Norrish type two initiation. Additionally, parameters that control the degree of stratification, such as methods of varying polymerization rate and the light gradient, will be examined. Changes in surface properties (such as contact angle, surface hardness, adhesion) and bulk properties (such as mechanical properties measured by dynamic mechanical analysis and polymer swelling) are studied as a function of stratification. Finally, a mathematical model which describes and predicts the production of stratified films via photopolymerization is presented. Photopolymerization allows for a facile, single step method of generating stratified films with controllable surface chemistries.
9

Mid-Infrared Spectral Characterization of Aflatoxin Contamination in Peanuts

Kaya Celiker, Hande 18 October 2012 (has links)
Contamination of peanuts by secondary metabolites of certain fungi, namely aflatoxins present a great health hazard when exposed either at low levels for prolonged times (carcinogenic) or at high levels at once (poisonous). It is important to develop an accurate and rapid measurement technique to trace the aflatoxin and/or source fungi presence in peanuts. Thus, current research focused on development of vibrational spectroscopy based methods for detection and separation of contaminated peanut samples. Aflatoxin incidence, as a chemical contaminant in peanut paste samples, was investigated, in terms of spectral characteristics using FTIR-ATR. The effects of spectral pre-processing steps such as mean-centering, smoothing the 1st derivative and normalizing were studied. Logarithmic method was the best normalization technique describing the exponentially distributed spectral data. Spectral windows giving the best correlation with respect to increasing aflatoxin amount led to selection of fat associated spectral bands. Using the multivariate analysis tools, structural contributions of aflatoxins in peanut matrix were detected. The best region was decided as 3028-2752, 1800-1707, 1584-1424, and 1408-1127 cm-1 giving correlation coefficient for calibration (R2C), root mean square error for calibration (RMSEC) and root mean square error for prediction (RMSEP) of 98.6%, 7.66ppb and 19.5ppb, respectively. Applying the constructed partial least squares model, 95% of the samples were correctly classified while the percentage of false negative and false positive identifications were 16% and 0%, respectively. Aspergillus species of section Flavi and the black fungi, A. niger are the most common colonists of peanuts in nature and the majority of the aflatoxin producing strains are from section Flavi. Seed colonization by selected Aspergillus spp. was investigated by following the chemical alterations as a function of fungal growth by means of spectral readouts. FTIR-ATR was utilized to correlate spectral characteristics to mold density, and to separate Aspergillus at section, species and strain levels, threshold mold density values were established. Even far before the organoleptic quality changes became visually observable (~10,000 mold counts), FTIR distinguished the species of same section. Besides, the analogous secondary metabolites produced increased the similarity within the spectra even their spectral contributions were mostly masked by bulk peanut medium; and led to grouping of species producing the same mycotoxins together. Aflatoxigenic and non-aflatoxigenic strains of A. flavus and A. parasiticus were further studied for measurement capability of FTIR-ATR system in discriminating the toxic streams from just moldy and clean samples. Owing to increased similarity within the collected spectral data due to aflatoxin presence, clean samples (having aflatoxin level lower than 20 ppb, n=44), only moldy samples (having aflatoxin level lower than 300 ppb, n=28) and toxic samples (having aflatoxin level between 300-1200 ppb, n=23) were separated into appropriate classes (with a 100% classification accuracy). Photoacoustic spectroscopy (PAS) is a non-invasive technique and offers many advantages over more traditional ATR system, specifically, for in-field measurements. Even though the sample throughput time is longer compared to ATR measurements, intact seeds can be directly loaded into sample compartment for analysis. Compared to ATR, PAS is more sensitive to high moisture in samples, which in our case was not a problem since peanuts have water content less than 10%. The spectral ranges between: 3600-2750, 1800-1480, 1200-900 cm-1 were assigned as the key bands and full separation between Aspergillus spp. infected and healthy peanuts was obtained. However, PAS was not sensitive as ATR either in species level classification of Aspergillus invasion or toxic-moldy level separation. When run for separation of aflatoxigenic versus non-aflatoxigenic batches of samples, 7 out of 54 contaminated samples were misclassified but all healthy peanuts were correctly identified (15 healthy/ 69 total peanut pods). This study explored the possibility of using vibrational spectroscopy as a tool to understand chemical changes in peanuts and peanut products to Aspergillus invasion or aflatoxin contamination. The overall results of current study proved the potential of FTIR, equipped with either ATR or PAS, in identification, quantification and classification at varying levels of mold density and aflatoxin concentration. These results can be used to develop quality control laboratory methods or in field sorting devices. / Ph. D.
10

Chemical Characterisation of Nitrocellulose

Aarseth Larsson, Kim January 2014 (has links)
Nitrocellulose is the main component in many types of ammunition, propellants and explosives. The principles of production for nitrocellulose have not changed much since the 19th century when it started being industrially produced for this purpose. The character of the nitrocellulose has a large effect on the end products abilities. The aim of this study was to develop a method that would be able to characterise and distinguish between nitrocellulose from different manufacturers to be able to relate the character of the nitrocellulose to the properties of ammunition, propellants and explosives. Samples were dissolved in acetone and analysed by GC/MS and data were then analysed by multivariable statistics. FTIR was also used to characterise the nitrocellulose. Results from both methods showed very small differences when chromatograms and spectra were analysed. This study shows that GC/MS and FTIR are not suitable for this type of characterisation. The differences between the data were not sufficient to be able to separate the samples from each other. / Nitrocellulosa är den viktigaste komponenten i många typer av ammunition, drivmedel och sprängämnen. Principerna för produktionen av nitrocellulosa har inte förändrats mycket sedan det börjades produceras industriellt för detta ändamål på 1800 talet. Karaktären av nitrocellulosa har en stor inverkan på slutproduktens egenskaper. Syftet med denna studie var att utveckla en metod som skulle kunna karaktärisera och skilja mellan nitrocellulosa från olika tillverkare för att kunna relatera karaktären av nitrocellulosa till egenskaperna hos ammunition, drivmedel och sprängämnen. Proverna löstes i aceton och analyserades med GC/MS och data analyserades med multivariabel statistik. FTIR användes också för att karakterisera nitrocellulosan. Resultaten för båda proverna visade mycket små skillnader när kromatogram och spektra analyserades. Denna studie visar att GC/MS och FTIR inte är lämpliga för denna typ av karaktärisering. Skillnaderna i data var inte tillräckliga för att kunna skilja proverna från varandra.

Page generated in 0.1039 seconds