• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 11
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organische Gasphasenabscheidung zur Herstellung organischer Leuchtdioden

Hartmann, Sören January 2007 (has links)
Zugl.: Braunschweig, Techn. Univ., Diss., 2007
2

Entwicklung, Aufbau und Automatisierung einer UHV-Aufdampfanlage sowie Untersuchungen zur Morphologie und Reaktivität dünner Schichten

Lukoschus, Kim Andreas. January 2000 (has links) (PDF)
Kiel, Universiẗat, Diss., 2000.
3

Erzeugung großflächiger organischer Leuchtdioden in einem vertikalen In-Line-Bedampfungssystem

Schreil, Manfred. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2005--Dresden.
4

Employing the Au(111) surface as substrate for the synthesis of two-dimensional metal oxide and metal sulfide structures

Biener, Monika. Unknown Date (has links) (PDF)
University, Diss., 2005--Bremen. / Erscheinungsjahr an der Haupttitelstelle: 2004.
5

Ätzen von Titannitrid mit Halogenverbindungen Kammerreinigung mit externer Plasmaquelle

Hellriegel, Ronald January 2009 (has links)
Zugl.: Dresden, Techn. Univ., Diss., 2009
6

STM-, XPS-, LEED- und ISS-Untersuchungen an reinen und Pd-bedeckten ultradünnen Titanoxidschichten auf Pt(111)

Ostermann, Dieter. Unknown Date (has links)
Universiẗat, Diss., 2005--Düsseldorf.
7

Erzeugung großflächiger organischer Leuchtdioden in einem vertikalen In-Line-Bedampfungssystem

Schreil, Manfred 24 May 2005 (has links) (PDF)
Im Mittelpunkt der vorliegenden Dissertation stand die Herstellung von organischen Leuchtdioden und Passiv-Matrix-Displays an einer neuartigen Durchlauf-Depositionsanlage. Die Abscheidung von "small molecule" Materialien im Hochvakuum wurde dabei mittels organischer Molekularstrahldeposition (OMBD) durchgeführt. Um effiziente Leuchtdioden zu erzielen, sind die Bauelemente als Mehrschichtsystem aufgebracht worden. Als Grundstruktur kam eine Schichtenfolge zur Anwendung, die als Löchertransporter aus dem Starburst-Derivat 2-TNATA, daran anschließend einem tertiären Arylamin, dem elektronenblockierenden a-NPB sowie dem Oxinat-Komplex Alq3 besteht. Dabei diente das Aluminium-Oxinat als Elektronenleiter und Emissionsmaterial. Mit dem Quinacridon-Derivat QAD als Dotierstoff wurde außerdem eine OLED-Struktur mit Gast-Wirtsystem realisiert Eine kontrollierte und reproduzierbare Deposition der organischen Materialien ist eine unabdingbare Voraussetzung, um organische Leuchtdioden kommerziell als Mehrschichtbauelemente herstellen zu können. Dazu wurde ein Hochvakuumsystem der Firma Applied Films installiert und in Betrieb genommen. Die VES 400/13-Entwicklungsanlage ist als Vertical Evaporation and Sputtering Durchlaufsystem für bis zu 400 mm hohe Substrate mit 11 individuellen Prozesskammern sowie zwei daran anschließenden Stickstoffboxen konzipiert. Diese Technologie ermöglicht das Aufdampfen einer oder nacheinander mehrerer Schichten auf beliebiges Substratmaterial. Entsprechend den Erfordernissen sind wichtige Prozessparameter wie Depositionsrate, Transportgeschwindigkeit des Substrates sowie Filmdicke der funktionellen Schichten in einem weiten Bereich frei einstellbar. Neben einer ausgeglichenen Löcher- und Elektroneninjektion werden die Eigenschaften der hergestellten Leuchtdioden durch die Dicken der einzelnen Schichten, der Beweglichkeit der Ladungsträger in den verwendeten organischen Materialien sowie der energetischen Lage der höchsten besetzten und niedrigsten unbesetzten Molekülorbitale der Halbleiter bestimmt. Als undotierte OLED-Struktur wurde eine Schichtenfolge aus ITO / 2-TNATA / NPB / Alq3 / Mg verwendet. Die Stärke der elektrischen Kontakte betrug jeweils etwa 150 nm für ITO bzw. Magnesium. Die organischen Halbleiterfilme verfügten über Lagendicken von 60 / 10 / 60 nm. Eine derart aufgebaute Leuchtdiode zeigte ein grünes Emissionsspektrum, dessen Mittenwellenlänge bei etwa 537 nm lag und eine Halbwertsbreite von circa 112 nm aufwies. Für die Betriebsspannung, die Leuchtdichte, die Strom- sowie die Leistungseffizienz ergaben sich für die beiden Stromdichten von 3 mA/cm² und 30 mA/cm² optimierte Werte zu 5,3 V bzw. 9,4 V, 100 cd/m² bzw. 1317 cd/m², 3,3 cd/A bzw. 4,4 cd/A sowie 2 lm/W bzw. 1,5 lm/W. Das Sperr- oder Gleichrichtungsverhältnis Gv wurde für die beiden gemessenen Maximal-spannungen von ±10 Volt zu <5 x 107 bestimmt. Durch die Dotierung der Alq3-Emissionsschicht mit etwa 1 mol% des Quinacridon-Derivats QAD und Hinzufügen einer separaten Elektronentransportschicht konnte eine Steigerung der Elektrolumines-zenz erreicht werden. Der OLED-Aufbau des Gast-Wirt-Systems verfügt über einen Schichtenstapel mit den Lagen ITO / 2-TNATA / NPB / Alq3 + QAD / Alq3 / Mg. Die Filmdicken der organischen Schichten der OLED mit den besten Eigenschaften betragen 60 / 10 / 35 / 25 nm. Die anorganischen elektrischen Kontakte waren jeweils etwa 150 nm dick. Die dotierten Bauelemente zeigen ein bei einer Mittenwellenlänge von 527 nm emittierendes, grünes Spektrum. Mit einer geringen Halbwertsbreite von 28 nm ist die Bedingung einer schmalen Emissionsbreite für die Anwendung in OLED-Displays erfüllt. Die Betriebsspannung, die Leuchtdichte, die Strom- und die Leistungseffizienz ergeben für die beiden Stromdichten von 6,2 mA/cm² und 45,6 mA/cm² optimierte Werte zu 10,8 V bzw. 17,0 V, 445,4 cd/m² bzw. 3816,7 cd/m², 7,2 cd/A bzw. 8,4 cd/A sowie 2,1 lm/W bzw. 1,6 lm/W.
8

Elektrische und spektroskopische Charakterisierung von organischen Feldeffekttransistor-Strukturen

Lehmann, Daniel 03 April 2009 (has links) (PDF)
In dieser Arbeit werden die Resultate aus den elektrischen Untersuchungen an organischen Feldeffekttransistoren (OFETs) auf der Basis von Pentacen und von verschiedenen Perylentetracarbonsäurediimid-Derivaten (PTCDI) vorgestellt und diskutiert. Die PTCDI-Derivate wurden zudem mit der spektroskopischen Ellipsometrie hinsichtlich ihrer Morphologie und ihrer optischen Eigenschaften untersucht. Im Rahmen dieser Arbeit wurde ein System zur Herstellung und zur elektrischen Charakterisierung von OFET-Strukturen entwickelt. Dieses erlaubt die Herstellung von Strukturen bzw. Schichtsystemen unter gekühlten oder erhitzten Bedingungen im Hochvakuum. Die elektrische Vermessung kann danach direkt im Vakuum erfolgen, ohne das erzeugte Bauteil den Gasen der Umgebungsluft oder Licht auszusetzen, wodurch die Ergebnisse von den Einflüssen beider Faktoren unabhängig sind. Außerhalb des Vakuums fanden weitere Messmethoden Verwendung, um die Grenzflächeneinflüsse und das organische Schichtwachstum detailliert zu untersuchen und mit den Ergebnissen der elektrischen Messungen korrelieren zu können. Das in der Literatur bereits vielfach besprochene p-leitende Pentacen wurde einerseits als Referenzmaterial bei der Entwicklung der Herstellungsprozedur für die hier erzeugten OFETs eingesetzt, andererseits auch zum Vergleich zwischen sowohl mit hydrophobisierendem Octadecyltrichlorosilan (OTS) oberflächenbehandelten und -unbehandelten OFETs. Zudem wurde es auch zum Vergleich zwischen dem hier verwendeten Top-Kontakt-Aufbau und dem in der Literatur diskutierten Bottom-Kontakt-Aufbau verwendet. Die elektrischen Messungen offenbarten einerseits eine um den Faktor 2 höhere Lochmobilität und andererseits auch eine erhöhte Stabilität unter Spannungsbelastung der OTS-behandelten Probe gegenüber der Nichtbehandlung. Die Schwellspannung blieb unbeeinflusst. Unter Verwendung der Potentiometrie konnten ortsaufgelöste Spannungsverläufe in Abhängigkeit von der Position im Kanal aufgenommen werden. Dabei zeigte sich für die hier verwendeten Top-Kontakt-OFETs kein signifikanter Kontaktwiderstand zwischen Gold und Pentacen an der Grenzfläche der Source- und Drain-Elektroden, wie es in der Literatur für Bottom-Kontakt-OFETs berichtet wurde. Das extrahierte ortsaufgelöste elektrische Feld im Kanal erschien für die OTS-behandelte Probe symmetrisch, während die unbehandelte Probe einen asymmetrischen Verlauf aufwies. Mit Hilfe der spektroskopischen Ellipsometrie konnten Aussagen über die Morphologie der n-leitenden PTCDI-Derivate DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI und PDI-8CN2 getroffen werden. Die dabei im selben Prozess ermittelten dielektrischen Funktionen können für die Verwendung der untersuchten organischen Halbleiter in optoelektronischen Bauelementen von großer Bedeutung sein. Zur korrekten Beschreibung der unter DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auftretenden großen Oberflächenrauigkeiten wurde ein neues Ellipsometrie-Modell entwickelt, womit auch für diese Derivate die dielektrische Funktion bestimmt werden konnte. Ausgehend von den aus Rasterkraftmikroskopiebildern ermittelten tiefenabhängigen Materialdichteverteilungen wurde dabei ein angepasster Verlauf für die Materialdichte innerhalb der Rauigkeitsschicht entwickelt, welcher das traditionelle Modell vollständig ersetzen kann. Die elektrischen Messungen ergaben für die PTCDI-Derivate erheblich unterschiedliche Kenngrößen. Die verschiedenen Seitenketten führten dabei zu Unterschieden in der Elektronenmobilität von bis zu vier Größenordnungen. Ebenso wiesen die Schwellspannungen Differenzen bis 20 V auf. Des Weiteren zeigten sich unter elektrischer Belastung und nach einer thermischen Behandlung deutlich unterschiedliche und teilweise konträre Effekte hinsichtlich der Entwicklung der Elektronenmobilität und der Schwellspannung. Da alle untersuchten PTCDI-Derivate optisch isotrop aufwuchsen, konnte über der Molekülorientierung kein Bezug zur Ladungsträgermobilität gefunden werden. Jedoch konnten die sehr geringen Mobilitäten von DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auf deren Inselwachstum zurückgeführt werden, welches die nötige Pfadlänge für die Ladungsträger zwischen den Elektroden erhöhte. An Umgebungsluft stellten alle PTCDI-Derivate bis auf PDI-8CN2 ihre Funktionalität ein. Abgesehen von letzterem war DiMe-PTCDI nach erneutem Einbringen ins Vakuum und einer Erholungszeit von mehreren zehn Minuten wieder funktionstüchtig. Eine OTS-Behandlung wurde für PDI-8CN2 durchgeführt, um zu einem Vergleich mit den Ergebnissen von Pentacen zu gelangen. Es zeigte sich aber, dass nahezu alle elektrischen Eigenschaften von PDI-8CN2 durch diese Behandlung negativ beeinflusst wurden. / In this work the results of the electrical characterization of organic field-effect transistors (OFETs) based on pentacene and various derivatives of perylene tetracarboxylic diimide (PTCDI) are presented and discussed. The PTCDI derivatives were also characterized regarding their morphology and their optical properties using spectroscopic ellipsometry. A system for the preparation and electrical characterization of OFET structures was developed, which allows the preparation of thin film devices under cooled and annealed conditions, respectively, in high vacuum. The electrical measurements can be performed directly in vacuum without exposing the prepared device to the environmental gases or light making the results independent of these factors. Under ambient atmosphere further techniques have been used to study the growth of the organic layers in detail to correlate these results with the results of the electrical characterization. Pentacene is a p-conducting organic semiconductor which is most often discussed in literature regarding OFETs and has been used in this work as a reference material for the developed preparation system. Pentacene was also used for the comparison of two different dielectric/organic interfaces: one interface was bare SiO2 and the second interface was SiO2 treated with a self assembling monolayer of octadecyltrichlorosilane (OTS). Additionally it was used to compare the top-contact configuration for OFETs of this work with the bottom-contact configuration discussed in literature. The electrical measurements revealed on the one hand an increase in the hole mobility by a factor of two and on the other hand also an enhanced stability against bias stress for the OTS treated sample. The threshold voltage remained unchanged. Using potentiometry the electrical potential distribution within the transistor channel could be obtained. No interface resistance at the organic/metal interface could be found for top-contact configuration, in opposite to the high interface resistance reported in literature for the bottom-contact configuration. The extracted electrical field distribution within the channel showed a symmetric behavior for the OTS treated sample while it was asymmetric for the untreated sample. Using spectroscopic ellipsometry the morphology of the n-conducting PTCDI derivatives DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI, and PDI-8CN2 could be revealed. The also determined dielectric functions are important for the use of the investigated organic semiconductors within opto-electronic devices. For a precise evaluation of large surface roughnesses, as found for DiPhenyl-PTCDI and DiMethoxyethyl-PTCDI, a new ellipsometry model was developed. Using atomic force microscopy pictures a depth-dependent material concentration could be determined which was put into the ellipsometry model of surface roughness. This new model can fully replace the traditional model. The electrical measurements for the PTCDI derivatives revealed a considerable influence of the various side groups on the device performance. The electron mobility spread over four orders of magnitude and the threshold voltage deviated by up to 20 V. Additionally the influence of bias stress and thermal annealing revealed different and partially oppositional behavior regarding the change in electron mobility and threshold voltage. As all molecules showed optical isotropy, the molecule orientation could not be correlated with the charge carrier mobility. However, the very low electron mobilities of Diphenyl-PTCDI and DiMethoxyethyl-PTCDI could be correlated with island growth which extends the necessary path length for the charge carriers between the electrodes. Under ambient atmosphere none of the PTCDI derivatives - beside PDI-8CN2 - was working. Nevertheless, DiMe-PTCDI continued its functionality when it was brought back into the vacuum. An OTS treatment was applied for one PDI-8CN2 sample. This treatment, however, led to worse electrical characteristics.
9

Erzeugung großflächiger organischer Leuchtdioden in einem vertikalen In-Line-Bedampfungssystem

Schreil, Manfred 08 June 2005 (has links)
Im Mittelpunkt der vorliegenden Dissertation stand die Herstellung von organischen Leuchtdioden und Passiv-Matrix-Displays an einer neuartigen Durchlauf-Depositionsanlage. Die Abscheidung von "small molecule" Materialien im Hochvakuum wurde dabei mittels organischer Molekularstrahldeposition (OMBD) durchgeführt. Um effiziente Leuchtdioden zu erzielen, sind die Bauelemente als Mehrschichtsystem aufgebracht worden. Als Grundstruktur kam eine Schichtenfolge zur Anwendung, die als Löchertransporter aus dem Starburst-Derivat 2-TNATA, daran anschließend einem tertiären Arylamin, dem elektronenblockierenden a-NPB sowie dem Oxinat-Komplex Alq3 besteht. Dabei diente das Aluminium-Oxinat als Elektronenleiter und Emissionsmaterial. Mit dem Quinacridon-Derivat QAD als Dotierstoff wurde außerdem eine OLED-Struktur mit Gast-Wirtsystem realisiert Eine kontrollierte und reproduzierbare Deposition der organischen Materialien ist eine unabdingbare Voraussetzung, um organische Leuchtdioden kommerziell als Mehrschichtbauelemente herstellen zu können. Dazu wurde ein Hochvakuumsystem der Firma Applied Films installiert und in Betrieb genommen. Die VES 400/13-Entwicklungsanlage ist als Vertical Evaporation and Sputtering Durchlaufsystem für bis zu 400 mm hohe Substrate mit 11 individuellen Prozesskammern sowie zwei daran anschließenden Stickstoffboxen konzipiert. Diese Technologie ermöglicht das Aufdampfen einer oder nacheinander mehrerer Schichten auf beliebiges Substratmaterial. Entsprechend den Erfordernissen sind wichtige Prozessparameter wie Depositionsrate, Transportgeschwindigkeit des Substrates sowie Filmdicke der funktionellen Schichten in einem weiten Bereich frei einstellbar. Neben einer ausgeglichenen Löcher- und Elektroneninjektion werden die Eigenschaften der hergestellten Leuchtdioden durch die Dicken der einzelnen Schichten, der Beweglichkeit der Ladungsträger in den verwendeten organischen Materialien sowie der energetischen Lage der höchsten besetzten und niedrigsten unbesetzten Molekülorbitale der Halbleiter bestimmt. Als undotierte OLED-Struktur wurde eine Schichtenfolge aus ITO / 2-TNATA / NPB / Alq3 / Mg verwendet. Die Stärke der elektrischen Kontakte betrug jeweils etwa 150 nm für ITO bzw. Magnesium. Die organischen Halbleiterfilme verfügten über Lagendicken von 60 / 10 / 60 nm. Eine derart aufgebaute Leuchtdiode zeigte ein grünes Emissionsspektrum, dessen Mittenwellenlänge bei etwa 537 nm lag und eine Halbwertsbreite von circa 112 nm aufwies. Für die Betriebsspannung, die Leuchtdichte, die Strom- sowie die Leistungseffizienz ergaben sich für die beiden Stromdichten von 3 mA/cm² und 30 mA/cm² optimierte Werte zu 5,3 V bzw. 9,4 V, 100 cd/m² bzw. 1317 cd/m², 3,3 cd/A bzw. 4,4 cd/A sowie 2 lm/W bzw. 1,5 lm/W. Das Sperr- oder Gleichrichtungsverhältnis Gv wurde für die beiden gemessenen Maximal-spannungen von ±10 Volt zu <5 x 107 bestimmt. Durch die Dotierung der Alq3-Emissionsschicht mit etwa 1 mol% des Quinacridon-Derivats QAD und Hinzufügen einer separaten Elektronentransportschicht konnte eine Steigerung der Elektrolumines-zenz erreicht werden. Der OLED-Aufbau des Gast-Wirt-Systems verfügt über einen Schichtenstapel mit den Lagen ITO / 2-TNATA / NPB / Alq3 + QAD / Alq3 / Mg. Die Filmdicken der organischen Schichten der OLED mit den besten Eigenschaften betragen 60 / 10 / 35 / 25 nm. Die anorganischen elektrischen Kontakte waren jeweils etwa 150 nm dick. Die dotierten Bauelemente zeigen ein bei einer Mittenwellenlänge von 527 nm emittierendes, grünes Spektrum. Mit einer geringen Halbwertsbreite von 28 nm ist die Bedingung einer schmalen Emissionsbreite für die Anwendung in OLED-Displays erfüllt. Die Betriebsspannung, die Leuchtdichte, die Strom- und die Leistungseffizienz ergeben für die beiden Stromdichten von 6,2 mA/cm² und 45,6 mA/cm² optimierte Werte zu 10,8 V bzw. 17,0 V, 445,4 cd/m² bzw. 3816,7 cd/m², 7,2 cd/A bzw. 8,4 cd/A sowie 2,1 lm/W bzw. 1,6 lm/W.
10

Elektrische und spektroskopische Charakterisierung von organischen Feldeffekttransistor-Strukturen

Lehmann, Daniel 27 March 2009 (has links)
In dieser Arbeit werden die Resultate aus den elektrischen Untersuchungen an organischen Feldeffekttransistoren (OFETs) auf der Basis von Pentacen und von verschiedenen Perylentetracarbonsäurediimid-Derivaten (PTCDI) vorgestellt und diskutiert. Die PTCDI-Derivate wurden zudem mit der spektroskopischen Ellipsometrie hinsichtlich ihrer Morphologie und ihrer optischen Eigenschaften untersucht. Im Rahmen dieser Arbeit wurde ein System zur Herstellung und zur elektrischen Charakterisierung von OFET-Strukturen entwickelt. Dieses erlaubt die Herstellung von Strukturen bzw. Schichtsystemen unter gekühlten oder erhitzten Bedingungen im Hochvakuum. Die elektrische Vermessung kann danach direkt im Vakuum erfolgen, ohne das erzeugte Bauteil den Gasen der Umgebungsluft oder Licht auszusetzen, wodurch die Ergebnisse von den Einflüssen beider Faktoren unabhängig sind. Außerhalb des Vakuums fanden weitere Messmethoden Verwendung, um die Grenzflächeneinflüsse und das organische Schichtwachstum detailliert zu untersuchen und mit den Ergebnissen der elektrischen Messungen korrelieren zu können. Das in der Literatur bereits vielfach besprochene p-leitende Pentacen wurde einerseits als Referenzmaterial bei der Entwicklung der Herstellungsprozedur für die hier erzeugten OFETs eingesetzt, andererseits auch zum Vergleich zwischen sowohl mit hydrophobisierendem Octadecyltrichlorosilan (OTS) oberflächenbehandelten und -unbehandelten OFETs. Zudem wurde es auch zum Vergleich zwischen dem hier verwendeten Top-Kontakt-Aufbau und dem in der Literatur diskutierten Bottom-Kontakt-Aufbau verwendet. Die elektrischen Messungen offenbarten einerseits eine um den Faktor 2 höhere Lochmobilität und andererseits auch eine erhöhte Stabilität unter Spannungsbelastung der OTS-behandelten Probe gegenüber der Nichtbehandlung. Die Schwellspannung blieb unbeeinflusst. Unter Verwendung der Potentiometrie konnten ortsaufgelöste Spannungsverläufe in Abhängigkeit von der Position im Kanal aufgenommen werden. Dabei zeigte sich für die hier verwendeten Top-Kontakt-OFETs kein signifikanter Kontaktwiderstand zwischen Gold und Pentacen an der Grenzfläche der Source- und Drain-Elektroden, wie es in der Literatur für Bottom-Kontakt-OFETs berichtet wurde. Das extrahierte ortsaufgelöste elektrische Feld im Kanal erschien für die OTS-behandelte Probe symmetrisch, während die unbehandelte Probe einen asymmetrischen Verlauf aufwies. Mit Hilfe der spektroskopischen Ellipsometrie konnten Aussagen über die Morphologie der n-leitenden PTCDI-Derivate DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI und PDI-8CN2 getroffen werden. Die dabei im selben Prozess ermittelten dielektrischen Funktionen können für die Verwendung der untersuchten organischen Halbleiter in optoelektronischen Bauelementen von großer Bedeutung sein. Zur korrekten Beschreibung der unter DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auftretenden großen Oberflächenrauigkeiten wurde ein neues Ellipsometrie-Modell entwickelt, womit auch für diese Derivate die dielektrische Funktion bestimmt werden konnte. Ausgehend von den aus Rasterkraftmikroskopiebildern ermittelten tiefenabhängigen Materialdichteverteilungen wurde dabei ein angepasster Verlauf für die Materialdichte innerhalb der Rauigkeitsschicht entwickelt, welcher das traditionelle Modell vollständig ersetzen kann. Die elektrischen Messungen ergaben für die PTCDI-Derivate erheblich unterschiedliche Kenngrößen. Die verschiedenen Seitenketten führten dabei zu Unterschieden in der Elektronenmobilität von bis zu vier Größenordnungen. Ebenso wiesen die Schwellspannungen Differenzen bis 20 V auf. Des Weiteren zeigten sich unter elektrischer Belastung und nach einer thermischen Behandlung deutlich unterschiedliche und teilweise konträre Effekte hinsichtlich der Entwicklung der Elektronenmobilität und der Schwellspannung. Da alle untersuchten PTCDI-Derivate optisch isotrop aufwuchsen, konnte über der Molekülorientierung kein Bezug zur Ladungsträgermobilität gefunden werden. Jedoch konnten die sehr geringen Mobilitäten von DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auf deren Inselwachstum zurückgeführt werden, welches die nötige Pfadlänge für die Ladungsträger zwischen den Elektroden erhöhte. An Umgebungsluft stellten alle PTCDI-Derivate bis auf PDI-8CN2 ihre Funktionalität ein. Abgesehen von letzterem war DiMe-PTCDI nach erneutem Einbringen ins Vakuum und einer Erholungszeit von mehreren zehn Minuten wieder funktionstüchtig. Eine OTS-Behandlung wurde für PDI-8CN2 durchgeführt, um zu einem Vergleich mit den Ergebnissen von Pentacen zu gelangen. Es zeigte sich aber, dass nahezu alle elektrischen Eigenschaften von PDI-8CN2 durch diese Behandlung negativ beeinflusst wurden. / In this work the results of the electrical characterization of organic field-effect transistors (OFETs) based on pentacene and various derivatives of perylene tetracarboxylic diimide (PTCDI) are presented and discussed. The PTCDI derivatives were also characterized regarding their morphology and their optical properties using spectroscopic ellipsometry. A system for the preparation and electrical characterization of OFET structures was developed, which allows the preparation of thin film devices under cooled and annealed conditions, respectively, in high vacuum. The electrical measurements can be performed directly in vacuum without exposing the prepared device to the environmental gases or light making the results independent of these factors. Under ambient atmosphere further techniques have been used to study the growth of the organic layers in detail to correlate these results with the results of the electrical characterization. Pentacene is a p-conducting organic semiconductor which is most often discussed in literature regarding OFETs and has been used in this work as a reference material for the developed preparation system. Pentacene was also used for the comparison of two different dielectric/organic interfaces: one interface was bare SiO2 and the second interface was SiO2 treated with a self assembling monolayer of octadecyltrichlorosilane (OTS). Additionally it was used to compare the top-contact configuration for OFETs of this work with the bottom-contact configuration discussed in literature. The electrical measurements revealed on the one hand an increase in the hole mobility by a factor of two and on the other hand also an enhanced stability against bias stress for the OTS treated sample. The threshold voltage remained unchanged. Using potentiometry the electrical potential distribution within the transistor channel could be obtained. No interface resistance at the organic/metal interface could be found for top-contact configuration, in opposite to the high interface resistance reported in literature for the bottom-contact configuration. The extracted electrical field distribution within the channel showed a symmetric behavior for the OTS treated sample while it was asymmetric for the untreated sample. Using spectroscopic ellipsometry the morphology of the n-conducting PTCDI derivatives DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI, and PDI-8CN2 could be revealed. The also determined dielectric functions are important for the use of the investigated organic semiconductors within opto-electronic devices. For a precise evaluation of large surface roughnesses, as found for DiPhenyl-PTCDI and DiMethoxyethyl-PTCDI, a new ellipsometry model was developed. Using atomic force microscopy pictures a depth-dependent material concentration could be determined which was put into the ellipsometry model of surface roughness. This new model can fully replace the traditional model. The electrical measurements for the PTCDI derivatives revealed a considerable influence of the various side groups on the device performance. The electron mobility spread over four orders of magnitude and the threshold voltage deviated by up to 20 V. Additionally the influence of bias stress and thermal annealing revealed different and partially oppositional behavior regarding the change in electron mobility and threshold voltage. As all molecules showed optical isotropy, the molecule orientation could not be correlated with the charge carrier mobility. However, the very low electron mobilities of Diphenyl-PTCDI and DiMethoxyethyl-PTCDI could be correlated with island growth which extends the necessary path length for the charge carriers between the electrodes. Under ambient atmosphere none of the PTCDI derivatives - beside PDI-8CN2 - was working. Nevertheless, DiMe-PTCDI continued its functionality when it was brought back into the vacuum. An OTS treatment was applied for one PDI-8CN2 sample. This treatment, however, led to worse electrical characteristics.

Page generated in 0.0351 seconds