• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 36
  • 36
  • 27
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

X-ray standing wave studies of adsorbates on metal surfaces

Scragg, Glyn Frank January 1996 (has links)
No description available.
2

Towards quantitative intra-nuclear dose mapping of auger emitting radionuclides used for targeted radiotherapy

Royle, Georgina January 2016 (has links)
Targeted radiotherapy (TRT) is a technique which allows for individual cancer cells to be targeted by radiation. However, there is variation in uptake at the whole body, organ, cellular and subcellular levels. This distribution affects the biological efficacy of the TRT agents. To address this problem, novel techniques have been developed and demonstrated. These aim to provide quantitative information about the spatial distribution of Auger electron (AE) emitting radiopharmaceuticals at the subcellular level. Two methods have been developed. The first, photoresist autoradiography (PAR), uses photoresists as an autoradiography substrate, and the second uses microautoradiography (MAR) and a transmission electron microscope (TEM). The techniques have been demonstrated using the AE emitter indium-111. Firstly, PAR is demonstrated using poly (methyl methacrylate) (PMMA). Photoresists were exposed to indium-111 which had been internalised into cells, and the photoresists were analysed using atomic force microscopy (AFM). The technique has a theoretical resolution in the nanometre range and was able to demonstrate cellular patterns on the micron scale. To gain quantitative information, the photoresist response (depth of pattern) was calibrated as a function of electron fluence and a model of the patterns was created. Combining the calibration data with the point source model allowed the position and intensity of the internalised source terms to be estimated using the PAR method. Secondly, a technique for electron microscope-microautoradiography (EM-MAR) was developed. The processing conditions of the MAR technique were determined and staining techniques developed, to produce high quality TEM micrographs. A time course experiment showed the distribution and variation in the uptake of the radiopharmaceutical at the cellular level. Both techniques are able to provide information about the subcellular distribution of the radioactivity at a higher resolution than current techniques. Both enable the collection of information which can be used in microdosimetric calculations.
3

High resolution microanalysis of alloy steel

Vatter, Ian A. January 1993 (has links)
No description available.
4

Auger Electron Spectroscopy of Controlled Delaminating Materials on Aluminium Surfaces

Högblad, Jon January 2008 (has links)
<p>This master thesis in physics mainly treats Auger spectroscopy of interfaces that has been adhesively bond together with so called controlled delaminating materials (CDM). CDM is a new technology which involves adhesives with the distinctive property that they by the appliance of electricity can be released from a substrate. The reason for using Auger spectroscopy was that it gives a surface sensitive view of the chemical composition of the samples examined and this was believed to give hints of the mechanisms behind loss of adhesion. The samples were so called laminates which is an aluminium foil, CDM adhesive, aluminium foil structure. As expected Auger spectroscopy produced some promising results, especially regarding the breakdown of a certain anion contained into the examined CDM adhesive. This awoke new questions regarding how this anion was decomposed and the idea that it could be due to hydrolysis took form. The by far most important result within this work is that the anion breaks down. This could lead to the formation of hydrofluoric acid if this breakdown in fact is due to hydrolysis and the hydrofluoric acid could then react with the aluminium causing loss of adhesion. This could be the good starting point of a continuing work on CDM.</p>
5

Auger Electron Spectroscopy of Controlled Delaminating Materials on Aluminium Surfaces

Högblad, Jon January 2008 (has links)
This master thesis in physics mainly treats Auger spectroscopy of interfaces that has been adhesively bond together with so called controlled delaminating materials (CDM). CDM is a new technology which involves adhesives with the distinctive property that they by the appliance of electricity can be released from a substrate. The reason for using Auger spectroscopy was that it gives a surface sensitive view of the chemical composition of the samples examined and this was believed to give hints of the mechanisms behind loss of adhesion. The samples were so called laminates which is an aluminium foil, CDM adhesive, aluminium foil structure. As expected Auger spectroscopy produced some promising results, especially regarding the breakdown of a certain anion contained into the examined CDM adhesive. This awoke new questions regarding how this anion was decomposed and the idea that it could be due to hydrolysis took form. The by far most important result within this work is that the anion breaks down. This could lead to the formation of hydrofluoric acid if this breakdown in fact is due to hydrolysis and the hydrofluoric acid could then react with the aluminium causing loss of adhesion. This could be the good starting point of a continuing work on CDM.
6

Targeted Auger Electron Radiotherapy of HER2-amplified Breast Cancer

Costantini, Danny 23 September 2009 (has links)
Monoclonal antibodies (mAbs) conjugated to nuclear localization sequences (NLS) and labeled with Auger electron-emitters have great potential for targeted radiotherapy of cancer. This approach may be especially appropriate for the 25-30% of patients with breast cancer whose tumors display overexpression of HER2. Trastuzumab (Herceptin) is a humanized anti-HER2 mAb approved for immunotherapy of HER2-amplified breast cancer. The goal of this research was to radiolabel trastuzumab with [111]In, and to modify it with peptides harboring the NLS (CGYGPKKKRKVGG) of the simian virus 40 large-T antigen for targeted radiotherapy of breast cancer. It was hypothesized that the NLS-peptides would mediate the translocation of covalently linked [111]In-trastuzumab molecules into the nuclei of HER2-overexpressing breast cancer cells where subcellular-range Auger electrons are most damaging to DNA and lethal to cells. Trastuzumab was derivatized with sulfosuccinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate for reaction with NLS-peptides and labeled with [111]In using diethylenetriaminepentaacetic acid. The dissociation constant for binding of [111]In-NLS-trastuzumab to HER2-overexpressing SK-BR-3 human breast cancer cells was reduced < 3-fold compared to [111]In-trastuzumab, demonstrating relatively preserved receptor-binding affinity. The NLS-peptides did not affect the biodistribution of [111]In-trastuzumab, but promoted its nuclear uptake in HER2-overexpressing MDA-MB-361 xenografts. The cytotoxicity of [111]In-NLS-trastuzumab on breast cancer cells correlated with their HER2 expression. Moreover, [111]In-NLS-trastuzumab was 2-fold and 5-fold more potent at killing MDA-MB-361 and SK-BR-3 cells compared to [111]In-trastuzumab, and nearly 3-fold and 6-fold more effective than unlabeled trastuzumab, respectively. Methotrexate is a known radiosensitizer that can amplify the lethal effects of ionizing radiation on tumor cells. Non-cytotoxic, but radiosensitizing doses of methotrexate were therefore combined with [111]In-NLS-trastuzumab; this enhanced the sensitivity of HER2-overexpressing breast cancer cells to [111]In-NLS-trastuzumab. The blood t1/2 of [111]In-NLS-trastuzumab in non-tumor bearing BALB/c mice was 23-34 h when administered intravenously or intraperitoneally. The maximum tolerated dose was 9.2-18.5 MBq; doses >18.5 MBq caused decreased leukocyte and platelet counts. [111]In-NLS-trastuzumab exhibited strong anti-tumor effects against HER2-overexpressing MDA-MB-361 xenografts, reducing their growth rate 2-fold and 3-fold compared to mice administered [111]In-trastuzumab or unlabeled trastuzumab, respectively. These promising results suggest that [111]In-NLS-trastuzumab may be a useful Auger electron radioimmunotherapeutic agent for HER2-positive breast cancer in humans.
7

Targeted Auger Electron Radiotherapy of HER2-amplified Breast Cancer

Costantini, Danny 23 September 2009 (has links)
Monoclonal antibodies (mAbs) conjugated to nuclear localization sequences (NLS) and labeled with Auger electron-emitters have great potential for targeted radiotherapy of cancer. This approach may be especially appropriate for the 25-30% of patients with breast cancer whose tumors display overexpression of HER2. Trastuzumab (Herceptin) is a humanized anti-HER2 mAb approved for immunotherapy of HER2-amplified breast cancer. The goal of this research was to radiolabel trastuzumab with [111]In, and to modify it with peptides harboring the NLS (CGYGPKKKRKVGG) of the simian virus 40 large-T antigen for targeted radiotherapy of breast cancer. It was hypothesized that the NLS-peptides would mediate the translocation of covalently linked [111]In-trastuzumab molecules into the nuclei of HER2-overexpressing breast cancer cells where subcellular-range Auger electrons are most damaging to DNA and lethal to cells. Trastuzumab was derivatized with sulfosuccinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate for reaction with NLS-peptides and labeled with [111]In using diethylenetriaminepentaacetic acid. The dissociation constant for binding of [111]In-NLS-trastuzumab to HER2-overexpressing SK-BR-3 human breast cancer cells was reduced < 3-fold compared to [111]In-trastuzumab, demonstrating relatively preserved receptor-binding affinity. The NLS-peptides did not affect the biodistribution of [111]In-trastuzumab, but promoted its nuclear uptake in HER2-overexpressing MDA-MB-361 xenografts. The cytotoxicity of [111]In-NLS-trastuzumab on breast cancer cells correlated with their HER2 expression. Moreover, [111]In-NLS-trastuzumab was 2-fold and 5-fold more potent at killing MDA-MB-361 and SK-BR-3 cells compared to [111]In-trastuzumab, and nearly 3-fold and 6-fold more effective than unlabeled trastuzumab, respectively. Methotrexate is a known radiosensitizer that can amplify the lethal effects of ionizing radiation on tumor cells. Non-cytotoxic, but radiosensitizing doses of methotrexate were therefore combined with [111]In-NLS-trastuzumab; this enhanced the sensitivity of HER2-overexpressing breast cancer cells to [111]In-NLS-trastuzumab. The blood t1/2 of [111]In-NLS-trastuzumab in non-tumor bearing BALB/c mice was 23-34 h when administered intravenously or intraperitoneally. The maximum tolerated dose was 9.2-18.5 MBq; doses >18.5 MBq caused decreased leukocyte and platelet counts. [111]In-NLS-trastuzumab exhibited strong anti-tumor effects against HER2-overexpressing MDA-MB-361 xenografts, reducing their growth rate 2-fold and 3-fold compared to mice administered [111]In-trastuzumab or unlabeled trastuzumab, respectively. These promising results suggest that [111]In-NLS-trastuzumab may be a useful Auger electron radioimmunotherapeutic agent for HER2-positive breast cancer in humans.
8

A.E.S. characterisation of small dimensional heterostructures

Gelsthorpe, Andrew James January 2001 (has links)
No description available.
9

Investigations into the growth and etching of antimonides by chemical beam epitaxy and related techniques

Howard, Fraser Peter January 1999 (has links)
No description available.
10

Computational and instrumental developments in quantitative Auger electron analysis

Jackson, Andrew Robert January 1999 (has links)
No description available.

Page generated in 0.0535 seconds