• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure and Dynamics of Core-Excited Species

Travnikova, Oksana January 2008 (has links)
<p>In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies.</p><p>We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl<sub>2</sub> and C1s<sup>−1</sup>π*<sup>1</sup> states of allene molecules. The combined use of high-resolution spectroscopy with <i>ab initio</i> calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl<sub>2</sub> which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N<sub>2</sub>O.</p><p>We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH<sub>3</sub>X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.</p>
2

Structure and Dynamics of Core-Excited Species

Travnikova, Oksana January 2008 (has links)
In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies. We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl2 and C1s−1π*1 states of allene molecules. The combined use of high-resolution spectroscopy with ab initio calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl2 which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N2O. We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH3X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.
3

Theoretical Investigations Of Core-Level Spectroscopies In Strongly Correlated Systems

Gupta, Subhra Sen 12 1900 (has links)
Ever since the discovery of exotic phenomena like high temperature (Tc) superconductivity in the cuprates and colossal magnetoresistance in the manganites, strongly correlated electron systems have become the center of attention in the field of condensed matter physics research. This renewed interest has been further kindled by the rapid development of sophisticated experimental techniques and tremendous computational power. Computation plays a pivotal role in the theoretical investigation of these systems, because one cannot explain their complicated phase diagrams by simple, exactly solvable models. Among the plethora of experimental techniques, various kinds of high energy electron spectroscopies are fast gaining importance due to the multitude of physical properties and phenomena which they can access. However the physical processes involved and the interpretation of the spectra obtained from these spectroscopies are extremely complex and require extensive theoretical modelling. This thesis is concerned with the theoretical modelling of a certain class of high energy electron spectroscopies, viz. the core-level electron spectroscopies, for strongly correlated systems of various kinds. The spectroscopies covered are Auger electron spectroscopy (AES), core-level photoemission spectroscopy (core-level PES) and X-ray absorption spec- troscopy (XAS), which provide non-magnetic information, and also X-ray magnetic circular and linear dichroism (XMCD and XMLD), which provide magnetic information. .
4

Elektronenspektroskopie und Faktoranalyse zur Untersuchung von ionenbeschossenen Metall (Re, Ir, Cr, Fe)-Silizium-Schichten

Reiche, Rainer 29 January 2000 (has links) (PDF)
No description available.
5

Elektronenspektroskopie und Faktoranalyse zur Untersuchung von ionenbeschossenen Metall (Re, Ir, Cr, Fe)-Silizium-Schichten

Reiche, Rainer 07 February 2000 (has links)
No description available.

Page generated in 0.0762 seconds