• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Two-Step Targeting for Effective Radionuclide Therapy : Preclinical Evaluation of 125I-labelled Anthracycline Delivered by Tumour Targeting Liposomes

Fondell, Amelie January 2011 (has links)
For the treatment of cancer, Auger-electron emitting radionuclides are strongly dependent on their close proximity to DNA to utilize the local therapeutic potential of the Auger electrons. This thesis investigates a two-step targeting approach that uses targeting liposomes for the delivery of an Auger-electron emitter, 125I, coupled to a DNA-binding compound, Comp1, to the tumour-cell DNA. In the first step the liposome targets overexpressed cell-surface receptors. Receptors belonging to epidermal growth factor receptor (EGFR) family are overexpressed in a number of different cancers and are therefore suitable targets. The second step is transportation of the radionuclide to the cell nucleus utilizing a DNA-binding compound. The DNA-binder used in this thesis is a daunorubicin derivative called Comp1. Papers I and II are in vitro characterizations of the targeting liposomes. Both EGFR- and HER2-targeting liposomes delivered 125I-Comp1 receptor specifically to tumour cells, and were efficient in decreasing growth of cultured tumour cells. Paper II also included a biodistribution of 125I-Comp1 delivered by HER2-targeting liposomes in tumour-bearing mice. The results gave a time-dependent uptake in tumours differed from when non-targeting liposomes encapsulating 125I-Comp1 were given. Paper III investigates the therapeutic effect of 125I-Comp1 delivered by HER2-targeting liposomes, in an animal model that mimics a situation of disseminated tumour cells in the abdomen. 125I-Comp1 delivered by HER2-targeting liposomes effectively prolonged survival of the mice in a dose-dependent relation. Several mice in the groups receiving the highest doses were tumour-free at the end of the study. Paper IV compares different lipid compositions of the liposomes with respect to leakage, cellular uptake and therapeutic efficacy of delivered 125I-Comp1on cultured cells. Liposomes containing sphingomyelin or dihydrosphingomyelin retained drug more efficiently and exhibited more receptor specific delivery properties than distearoylglycerophosphatidylcholine (DSPC) containing liposomes. However, it was the DSPC-containing liposomes that displayed best growth inhibition on cultured tumour cells. The thesis concludes that 125I-Comp1 delivered by targeting liposomes is a promising candidate for effective radionuclide therapy.
2

Microdosimetric studies of Auger electrons from DNA-incorporated 123-I using the micronucleus assay and the Geant4 Monte Carlo simulation tookit

Fourie, Hein 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: This study’s focus is on the determination and quantization of radiation damage on a cellular level due to the decay of the Auger electron-emitting 123I and the replication of this energy deposition using Geant4 Monte Carlo simulations. The relatively short half-life of 123I (13.2 hours) makes it ideal for studies of Auger electrons which induce biological damage similar to that of high linear energy transfer radiations, when permitted to deposit their energy in close proximity to DNA. Due to small cellular dimensions, direct dose measurements are impossible but estimates may be made from Monte Carlo simulations. In this investigation the thymidine analogue 5-[123I]-iodo-2-deoxyuridine (123IUdR) was used to incorporate the 123I into the cellular DNA of T-lymphocytes from two human donors. Radiation induced micronuclei were numerated in binucleated cells using fluorescence microscopy. The energy deposition per decay of 123I was calculated within a spherical geometry, having the same size and density as a human lymphocyte, using the open source Geant4 toolkit. The absorbed energy per disintegration was used to convert the incorporated 123I activity (Bq) into absorbed dose (Gy) values, in order to compare the biological damage caused by the radioactive iodine to 60Co γ-radiation. A linear relationship between micronuclei frequency and 123I activity could be established. The linear dose-response noted for Auger electrons in the study is indicative of the high-LET nature of these particles. Using the linear-quadratic dose-response curve for micronuclei frequencies following exposure to graded doses of 60Co γ-rays, the relative biological effectiveness (RBE) of the DNA incorporated 123I estimated in this work was found to range from 19 ± 10 to 32 ± 7 for lymphocyte donor 1 and 15 ± 6 to 42 ± 11 for donor 2. The dose limiting RBE (RBEM) for lymphocyte donor 1 and 2 are respectively 34 ± 8 and 50 ± 15 and follows the expected shift in terms of the inherent radiosensitivity of the donors. We also considered the inclusion of the S-phase fraction of the lymphocytes in the dosimetry calculations. The resultant RBEs of the dose points of lymphocyte donor 1 ranges from 4 ± 2 to 7 ± 2, and those of donor 2 ranges from 3 ± 1 to 9 ± 2. The RBEM for lymphocyte donor 1 and 2 are respectively 7 ± 2 and 11 ± 3. The inclusion of the S-phase fraction reduces the calculated RBEs significantly and these observed RBE values relate well to those obtained in studies with fibroblasts and 125IUdR. / AFRIKAANSE OPSOMMING: Hierdie studie fokus op die bepaling en kwantisering van stralingskade op 'n sellulêre vlak as gevolg van die verval van 123I wat Auger elektrone afgee, asook die simulering van hierdie energie afsetting met behulp van die Geant4 Monte Carlo program. Die relatiewe kort half-leeftyd van 123I (13.2 uur) maak dit ideaal vir studies van Auger elektrone wat biologiese skade soortgelyk aan dié van 'n hoë lineêre-energie-oordrag uitstraling veroorsaak, indien die energie van die elektrone naby sellulêre DNA geabsorbeer word. As gevolg van die klein sellulêre dimensies is direkte dosis metings egter onmoontlik, maar skattings kan gemaak word met behulp van Monte Carlo simulasies. Die timidien analoog 5-[123I]-jodo-2-deoxyuridien (123IUdR) was in hierdie ondersoek gebruik om die 123I in die DNA van menslike T-limfosiete in te bou. Mikrokerne in dubbel-kernige selle wat vorm as gevolg van die Auger elektrone was getel met behulp van fluoressensie mikroskopie. Die energie afsetting per 123I verval was bereken binne ‘n sferiese geometrie, met dieselfde grootte en digtheid as 'n menslike limfosiet, met behulp van die Geant4 sagteware. Die geabsorbeerde energie per verval was gebruik om die geïnkorporeerde 123I aktiwiteit (Bq) om te skakel na ‘n waarde van geabsorbeerde dosis (Gy), ten einde die biologiese skade wat veroorsaak word deur die radioaktiewe jodium-123 met kobalt-60 gamma straling te vergelyk. ‘n Lineêre verwantskap tussen die mikrokerne frekwensies en die 123I aktiwiteit is vasgestel. Hierdie verwantskap vir Auger elektrone is 'n aanduiding van die hoë lineêre-energie-oordrag van hierdie deeltjies. Die lineêr-kwadratiese dosis-effek krommes vir mikrokerne frekwensies na blootstelling aan 60Co γ-strale was gebruik om die relatiewe biologiese doeltreffendheid (RBE) van die DNA geïnkorporeerde 123I te beraam. RBE waardes wissel van 19 ± 10 tot 32 ± 7 vir limfosiete van skenker 1 en 15 ± 6 tot 42 ± 11 vir skenker 2. Die dosis beperkte RBE (RBEM) vir limfosiet skenker 1 en 2 is onderskeidelik 34 ± 8 en 50 ± 15 en volg die verwagte skuif in terme van die inherente radiogevoeligheid van die skenkers. Die fraksie van limfosiete wat in S-fase was tydens die blootstelling aan 125IUdR was ingesluit in verdere dosimetrie berekeninge. Die gevolglike RBEs van die dosispunte van limfosiete van skenker 1 wissel van 4 ± 2 tot 7 ± 2 en dié van skenker 2 wissel van 3 ± 1 tot 9 ± 2. Die RBEM vir limfosiet skenker 1 en 2 is onderskeidelik 7 ± 2 en 11 ± 3. Die insluiting van die S-fase fraksie verminder die berekende RBEs aansienlik en die RBE waardes waargeneem hou goed verband met die wat in studies met fibroblaste en 125IUdR verkry is.
3

Radiosensitivierung durch iodhaltige DNA-bindende Liganden: Charakterisierung der Auger-Elektronen-Verstärkung durch verschiedene Strahlenqualitäten und Modulatoren

Götze, Pauline Johanna 12 March 2019 (has links)
Hintergrund: Die Entwicklung von Therapieprinzipien zur Behandlung von Krebserkrankungen hat eine anhaltende, sehr hohe wissenschaftliche Relevanz. Ziel dabei ist es, möglichst selektiv nur das erkrankte Gewebe zu schädigen. Besonders relevant ist dabei die Adressierung von für das Zellüberleben wichtigen Strukturen, wie etwa der DNA. Erreicht werden kann dies zum Beispiel durch eine Sensitivierung der DNA gegenüber energiereicher Strahlung. Ein vielversprechender Ansatz ist dabei die Generierung von Auger-Elektronen, welche auf subzellulärer Reichweite eine hohe Energie abgeben (hoher Linearer Energietransfer) und zu DNA-Strangbrüchen führen können. Dass durch unmittelbar an die DNA gekoppelte Auger-Emitter eine besonders effektive DNA-Schädigung zu erreichen ist, wurde zum Beispiel für 111Indium, 123Iod, 125Iod als auch für 99mTechnetium gezeigt. Es konnte sowohl in Untersuchungen an Zellen, als auch an Plasmid-DNA eine erfolgreiche Anregung nicht-radioaktiver Substanzen zur Auger-Emission durch ionisierende Strahlung, wie auch durch UV-Bestrahlung erreicht werden. Bekannt ist diese Sensitivierung gegenüber energiereicher Strahlung für in die DNA integrierte halogenierte DNA-Basen, wie zum Beispiel Iododeoxyuridin, mit Iod markierte DNA-Farbstoffen, wie etwa Iodo-Hoechst, als auch für DNA-gebundenes Platin. Ein bereits Iod enthaltender DNA-Farbstoff ist der Fluoreszenzfarbstoff Propidiumiodid (PI), welcher in die DNA interkaliert. Ob über die Markierung von DNA mit PI eine Sensitivierung gegenüber energiereicher Strahlung durch die Anregung des Iods zur Auger-Emission erreicht werden kann, wird in dieser Arbeit untersucht. Material und Methode: In den Versuchen wurde das Plasmid pUC 19 (2686 Basenpaare) mit unterschiedlichen Strahlenqualitäten (Röntgenstrahlung, niederenergetische Elektronenbestrahlung durch 99mTechnetium, hochenergetische Elektronenbestrahlung durch 188Rhenium, Partikelbestrahlung durch 223Radium, UV-Bestrahlung (254 nm und 366 nm) und Bestrahlung mit visuellem Licht (530-575 nm)) und Modulatoren (Wasserstoffperoxid H2O2, Zinndichlorid SnCl2, Dimethylsulfoxid DMSO) mit und ohne PI behandelt. Die Entstehung von DNA-Einzel-und Doppelstrangbrüchen führt zu einer Veränderung der Plasmidkonformation von einer superspiralisierten (supercoiled SC) zu entspannteren Formen (Einzelstrangbruch ESB-> open circle OC, Doppelstrangbruch DSB-> linearisiert L). Diese verschiedenen Plasmidkonformationen haben unterschiedliche Laufeigenschaften in der Gelelektrophorese und wurden so aufgetrennt. Nach einer Gelfärbung mit dem Fluoreszenzfarbstoff Ethidiumbromid (EtBr) erfolgte die quantitative Auswertung der Fluoreszenzintensität der unterschiedlichen Plasmidkonformations-Banden. Ergebnisse: Als grundsätzliche Voraussetzung für die nachfolgenden Versuche wurde zunächst die konzentrationsabhängige Markierung der DNA mit PI nachgewiesen, welche zu einer proportionalen Zunahme der Fluoreszenzintensität führt. Die Markierung ist stabil über die Zeit und verursacht keine DNA-Strangbrüche, jedoch eine Konformationsänderung der DNA. Eine Interaktion zwischen PI und der nachfolgenden Gelfärbung mit EtBr besteht nicht. Untersuchungen zur Chemotoxizität der Modulatoren ergaben für H2O2 keine relevante DNA-Strangbruchinduktion und für SnCl2 einen starken DNA-schädigenden Effekt mit einer konzentrationsabhängigen Induktion von ESB und DSB, welche durch den Radikalfänger DMSO verhinderbar waren, also über Radikale vermittelt wurden. Die Kombination aus H2O2 und SnCl2 führt zu einer Verstärkung der DNA-Schädigung. Für die ionisierende Strahlung konnte für alle Strahlenqualitäten eine dosisabhängige DNA-Schädigung mit Entstehung von ESB und bei höheren Dosen von DSB gezeigt werden, welche weitestgehend durch DMSO verhinderbar, also radikalvermittelt, waren. Die PI-Markierung der DNA führte in Kombination mit ionisierender Strahlung zu keiner Verstärkung der DNA-Schädigung. Es ließ sich sogar eher ein diskret protektiver Effekt durch PI bei hohen Dosen nachweisen. Da bekannt ist, dass für die Anregung eine Energie grade größer als die Energie der K-Schalen-Elektronen des Iods besonders effektiv ist, wurde vergleichend die Röntgenbestrahlung mit unterschiedlichen Beschleunigungspannungen (32 kV und 200 kV) untersucht. Jedoch führte auch hier die PI-Markierung nicht zu der erwarteten stärkeren DNA-Schädigung bei 200 kV. Die Untersuchung zur UV-Bestrahlung ergab für die Wellenlänge 254 nm einen DNA-toxischen Effekt. Durch die PI-Markierung ließ sich eine geringe Zunahme der ESB, jedoch keine DSB verzeichnen, so dass eine Auger-Emission unwahrscheinlich erscheint. Es scheint aber zu einer direkten Wechselwirkung mit der DNA zu kommen, da die Schädigung durch DMSO nicht vollständig verhinderbar ist. Für die Wellenlänge 366 nm wurde eine DNA-Toxizität, sowohl ohne, als auch mit PI-Markierung ausgeschlossen. Eine Kombination mit H2O2 führte zu einer massiven DNA-Destruktion mit Entstehung von ESB und DSB, welche durch Zugabe von DMSO suffizient verhindert werden konnten. Eine Bestrahlung mit visuellem Licht (530 - 575 nm) verursachte keine DNA-Schädigung. Durch die Markierung mit PI ließ sich eine konzentrationsabhängige DNA-Schädigung mit Entstehung von ESB erreichen. Es konnten jedoch keine DSB detektiert werden, so dass eine Auger-Emission unwahrscheinlich ist. DMSO kann die Schädigung nur partiell verhindern, so dass ein anderer direkter Effekt anzunehmen ist, am wahrscheinlichsten durch die optimale Anregung zur Fluoreszenz im Bereich des Absorptionsmaximums des PI. Schlussfolgerung: Es ließ sich für alle untersuchten Strahlenqualitäten, sowohl ionisierende Strahlung als auch Lichtbestrahlung, kein Effekt im Sinne einer Anregung zur Auger-Emission und der damit einhergehenden zu erwartenden Entstehung von DSB durch die Markierung mit PI unter den gegebenen Versuchsbedingungen nachweisen. Jedoch ließen sich Wechselwirkung bei der Bestrahlung mit Licht verzeichnen, so dass das grundlegende Prinzip einer Sensitivierung gegenüber energiereicher Strahlung für die Entwicklung von Therapiekonzepten weiterhin im Fokus steht.:1 Einleitung 1 2 Material und Methoden 3 2.1 Material 3 2.1.1 DNA 3 2.1.2 Chemikalien 4 2.1.3 Radionuklide und Bestrahlungssysteme 6 2.2 Methoden 10 2.2.1 Experimentelles Design 10 2.2.2 Charakterisierung der Plasmidkonformationen 12 2.2.3 Dosimetrie 13 2.2.4 Statistische Auswertung 14 3 Ergebnisse 15 3.1 Standardisierung der Messergebnisse und Quantifizierung 15 3.2 Einfluss physikalischer und chemischer Parameter auf die Plasmid-DNA 15 3.2.1 Festlegung Inkubationstemperatur und pH-Wert 15 3.2.2 Einfluss von DMSO auf die Plasmid-DNA 16 3.2.3 Einfluss von PI auf die Plasmid-DNA 16 3.2.3.1 Einfluss von DMSO auf Konformationsänderung durch PI 21 3.2.4 Einfluss von H2O2 auf die Plasmid-DNA und Wirkung von DMSO 23 3.2.5 Einfluss von H2O2 und PI auf die Plasmid-DNA 24 3.2.6 Einfluss von SnCl2 im TechneScan PYP-Kit auf die Plasmid-DNA 26 3.2.6.1 Einfluss von DMSO auf die Schädigung durch SnCl2 27 3.2.6.2 Einfluss von H2O2 auf die Schädigung durch SnCl2 29 3.2.6.3 Einfluss von DMSO auf die Schädigung durch SnCl2 und H2O2 30 3.3 Dosiswirkungsbeziehungen nach Exposition mit unterschiedlichen Strahlenqualitäten 31 3.3.1 Bestrahlung mit externer Röntgenstrahlung 31 3.3.1.1 Schädigung durch Röntgenbestrahlung und Einfluss von DMSO 31 3.3.1.2 Einfluss von PI auf Schädigung durch Röntgenbestrahlung mit Röhrenspannung von 200 kV und 32 kV 33 3.3.2 Bestrahlung mit 99mTc 36 3.3.2.1 Bestrahlung mit 99mTc und Einfluss von PI 36 3.3.3 Bestrahlung mit 188Re 40 3.3.3.1 Bestrahlung mit 188Re und Einfluss von PI 40 3.3.4 Bestrahlung mit 223Ra 42 3.3.4.1 Bestrahlung mit 223Ra und Einfluss von PI 43 3.3.5 Bestrahlung mit UV-Licht (254 nm) und Einfluss von PI 46 3.3.5.1 Einfluss von DMSO auf die Schädigung durch UV-Bestrahlung mit 254 nm 47 3.3.6 Bestrahlung mit UV-Licht (366 nm) und Einfluss von PI 48 3.3.6.1 Einfluss von H2O2 auf die Bestrahlung mit UV-Licht (366 nm) 49 3.3.6.2 Einfluss von DMSO auf die Schädigung durch H2O2 und UV-Bestrahlung (366 nm) 51 3.3.7 Bestrahlung mit VIS (530-575 nm) und Einfluss von PI 52 3.3.7.1 Einfluss von DMSO auf die Schädigung durch PI und VIS-Bestrahlung 54 4 Diskussion 56 4.1 Experimentelles Designe 58 4.1.1 DNA-Markierung mit PI 58 4.1.2 DNA-Markierung mit EtBr 59 4.2 Untersuchungen zur Chemotoxizität 60 4.2.1 Wechselwirkung zwischen H2O2 und Plasmid-DNA 60 4.2.2 Wechselwirkung zwischen SnCl2 und Plasmid DNA 60 4.2.2.1 Wechselwirkung zwischen H2O2 und SnCl2 61 4.3 Untersuchungen zu ionisierender Strahlung 62 4.3.1 DNA-Schädigung durch ionisierende Strahlung 62 4.3.2 Wechselwirkung zwischen ionisierender Strahlung und PI 63 4.4 Untersuchungen zur Bestrahlung mit Licht 66 4.4.1 Bestrahlung mit UV-Licht (254 nm) 66 4.4.2 Bestrahlung mit UV-Licht (366 nm) 67 4.4.2.1 Wechselwirkung zwischen H2O2 und UV-Licht (366 nm) 67 4.4.3 Bestrahlung mit visuellem Licht (VIS 530 - 575 nm) 68 4.4.4 Grenzen der Methode und Fehlerbetrachtung 69 4.5 Ausblick 70 5 Zusammenfassung 72 6 Summary 75 7 Literaturverzeichnis 77 8 Anhang 84 8.1 Abbildungsverzeichnis 84 8.2 Tabellenverzeichnis 92 8.3 Tabellen mit Daten zu den Abbildungen 96 8.3.1 Einfluss von PI auf die Plasmidkonformation 96 8.3.2 Einfluss von DMSO auf die Konformationsänderung durch PI 99 8.3.3 Einfluss von H2O2 auf die Plasmid-DNA und Wirkung von DMSO 100 8.3.4 Einfluss von H2O2 und PI auf die Plasmid-DNA 101 8.3.5 Einfluss von SnCl2 im TechneScan PYP-Kit auf die Plasmid-DNA 102 8.3.6 Einfluss von DMSO auf die Schädigung durch SnCl2 102 8.3.7 Einfluss von H2O2 auf die Schädigung durch SnCl2 103 8.3.8 Einfluss von DMSO auf die Schädigung durch H2O2 und SnCl2 104 8.3.9 Schädigung durch Röntgenbestrahlung und Einfluss von DMSO 104 8.3.10 Einfluss von PI auf Schädigung durch Röntgenbestrahlung mit Röhrenspannung von 200 kV und 32 kV 105 8.3.11 Bestrahlung mit 99mTc und Einfluss von PI 106 8.3.12 Bestrahlung mit 188Re und Einfluss von PI 107 8.3.13 Bestrahlung mit 223Ra und Einfluss von PI 108 8.3.14 Bestrahlung mit UV-Licht (254 nm) und Einfluss von PI 109 8.3.15 Einfluss von DMSO auf die Schädigung durch UV-Bestrahlung mit 254 nm 110 8.3.16 Bestrahlung mit UV-Licht (366 nm) und Einfluss von PI 110 8.3.17 Einfluss von H2O2 auf die Bestrahlung mit UV-Licht (366 nm) 110 8.3.18 Einfluss von DMSO auf die Schädigung durch H2O2 und UV- Bestrahlung (366 nm) 111 8.3.19 Bestrahlung mit VIS (530-575 nm) und Einfluss von PI 112 8.3.20 Einfluss von DMSO auf die Schädigung durch PI und VIS-Bestrahlung 113 8.3.21 Vergleich Strahlenqualitäten 114 9 Erklärung zur Eröffnung des Promotionsverfahrens 116 10 Erklärung zur Einhaltung gesetzlicher Vorgaben 117 11 Danksagung 118 / Introduction and aim of the study: The development of therapeutic principles for the treatment of cancer has a lasting, very high scientific relevance. The aim is to damage the diseased tissue only. The addressing of structures that are important for cell survival, such as the DNA, is particularly relevant. This can for example be achieved, by sensitizing the DNA to energized radiation. A promising approach is the generation of Auger electrons, which release high energy (high linear energy transfer) at sub-cellular range and can lead to DNA strand breaks. It has been shown that the direct coupling of Auger emitters to the DNA like indium-111, iodine-123, iodine-125 and technetium-99m cause particularly effective DNA damage. In investigations on cells as well as on plasmid DNA a successful excitation of non-radioactive substances for the emission of Auger electrons by ionizing radiation as well as UV-radiation was achieved. This sensitivity to energized radiation is known for halogenated DNA bases integrated into the DNA, such as iododeoxyuridine, iodine-labelled DNA dyes such as iodo-Hoechst and DNA-linked platinum. A DNA dye that already contains iodine is the fluorescent dye propidium iodide (PI) which intercalates into the DNA. This paper examines whether the labeling of DNA with PI can be used to achieve a sensitivity to energized radiation by excitation the iodine to Auger-emission. Materials and methods: In the experiments, the plasmid pUC 19 (2686 base pairs) was treated with different radiation qualities (X-ray radiation, low-energy electron irradiation by technetium-99m, high-energy electron irradiation by rhenium-188, particle-irradiation by radium-223, UV-irradiation (254 nm and 366 nm) and irradiation with visual light (530-575 nm)) and modulators (hydrogen peroxide H2O2, tin dichloride SnCl2, dimethyl sulfoxide DMSO) both with and without PI. The formation of DNA single- and double-strand breaks leads to alteration in plasmid conformation from superspiralized (supercoiled SC) to more relaxed forms (single strand break SSB-> open circle OC, double strand break DSB-> linear L). These different plasmid conformations have different running properties in gel electrophoresis and were separated this way. After gel staining with the fluorescent dye ethidium bromide (EtBr) the fluorescence intensity of the different plasmid conformational bands was evaluated quantitatively. Results: As a basic prerequisite for the subsequent experiments, the concentration-dependent labelling of the DNA with PI was demonstrated first, which leads to a proportional increase in fluorescence intensity. The labelling is stable over time and does not cause DNA strand breaks, but a conformational alteration of the DNA. There is no interaction between PI and the subsequent gel staining with EtBr. Investigations on the chemotoxicity of the modulators showed no relevant DNA strand breakage induction for H2O2 and a strong DNA-damaging effect for SnCl2 with a concentration-dependent induction of SSB and DSB, which was prevented by the radical scavanger DMSO, i. e. radical induced. The combination of H2O2 and SnCl2 leads to an increase of the DNA damage. For ionizing radiation, dose-dependent DNA damage with the formation of SSB and at higher doses of DSB, which was largely prevented by DMSO, i. e. radical induced, could be shown for all radiation qualities. The PI labeling of the DNA in combination with ionizing radiation did not lead to any amplification of the DNA damage. In fact, a discrete protective effect of PI at high doses could be demonstrated. Because it is known that the excitation with energy just greater than the energy of the K-shell electrons of iodine is particularly effective, the X-ray irradiation with different accelerating voltages (32 kV and 200 kV) was compared. However, the PI-labelling did not lead to the expected stronger DNA damage at 200 kV. The investigation of UV irradiation showed a DNA-toxic effect for the wavelength 254 nm. Due to the PI-labelling, a slight increase in SSB but no DSB were recorded, so that an Auger emission appears unlikely. However, it seems that there is a direct interaction with the DNA, because the damage is not completely preventable by DMSO. For the wavelength 366 nm a DNA toxicity was excluded, both without and with PI-marking. A combination with H2O2 led to a massive DNA destruction with the formation of SSB and DSB, which could be prevented sufficiently by the addition of DMSO. Irradiation with visual light (530-575 nm) did not cause DNA damage. By labelling with PI, concentration-dependent DNA damage with the formation of SSB could be achieved. However, no DSB could be detected, so that an Auger emission is unlikely. DMSO can only partially prevent the damage, so that another direct effect can be assumed, most likely through optimal excitation of the fluorescence around the absorption maximum of PI. Conclusion: For all investigated radiation qualities, i. e. ionizing radiation as well as light irradiation, no effect could be proven in the sense of an excitation to Auger emission and the associated expected development of DSB by labelling with PI under the given test conditions. However, interactions could be observed for the irradiation with light, so that the basic principle of sensitization to energized radiation for the development of therapy concepts remain of interest.:1 Einleitung 1 2 Material und Methoden 3 2.1 Material 3 2.1.1 DNA 3 2.1.2 Chemikalien 4 2.1.3 Radionuklide und Bestrahlungssysteme 6 2.2 Methoden 10 2.2.1 Experimentelles Design 10 2.2.2 Charakterisierung der Plasmidkonformationen 12 2.2.3 Dosimetrie 13 2.2.4 Statistische Auswertung 14 3 Ergebnisse 15 3.1 Standardisierung der Messergebnisse und Quantifizierung 15 3.2 Einfluss physikalischer und chemischer Parameter auf die Plasmid-DNA 15 3.2.1 Festlegung Inkubationstemperatur und pH-Wert 15 3.2.2 Einfluss von DMSO auf die Plasmid-DNA 16 3.2.3 Einfluss von PI auf die Plasmid-DNA 16 3.2.3.1 Einfluss von DMSO auf Konformationsänderung durch PI 21 3.2.4 Einfluss von H2O2 auf die Plasmid-DNA und Wirkung von DMSO 23 3.2.5 Einfluss von H2O2 und PI auf die Plasmid-DNA 24 3.2.6 Einfluss von SnCl2 im TechneScan PYP-Kit auf die Plasmid-DNA 26 3.2.6.1 Einfluss von DMSO auf die Schädigung durch SnCl2 27 3.2.6.2 Einfluss von H2O2 auf die Schädigung durch SnCl2 29 3.2.6.3 Einfluss von DMSO auf die Schädigung durch SnCl2 und H2O2 30 3.3 Dosiswirkungsbeziehungen nach Exposition mit unterschiedlichen Strahlenqualitäten 31 3.3.1 Bestrahlung mit externer Röntgenstrahlung 31 3.3.1.1 Schädigung durch Röntgenbestrahlung und Einfluss von DMSO 31 3.3.1.2 Einfluss von PI auf Schädigung durch Röntgenbestrahlung mit Röhrenspannung von 200 kV und 32 kV 33 3.3.2 Bestrahlung mit 99mTc 36 3.3.2.1 Bestrahlung mit 99mTc und Einfluss von PI 36 3.3.3 Bestrahlung mit 188Re 40 3.3.3.1 Bestrahlung mit 188Re und Einfluss von PI 40 3.3.4 Bestrahlung mit 223Ra 42 3.3.4.1 Bestrahlung mit 223Ra und Einfluss von PI 43 3.3.5 Bestrahlung mit UV-Licht (254 nm) und Einfluss von PI 46 3.3.5.1 Einfluss von DMSO auf die Schädigung durch UV-Bestrahlung mit 254 nm 47 3.3.6 Bestrahlung mit UV-Licht (366 nm) und Einfluss von PI 48 3.3.6.1 Einfluss von H2O2 auf die Bestrahlung mit UV-Licht (366 nm) 49 3.3.6.2 Einfluss von DMSO auf die Schädigung durch H2O2 und UV-Bestrahlung (366 nm) 51 3.3.7 Bestrahlung mit VIS (530-575 nm) und Einfluss von PI 52 3.3.7.1 Einfluss von DMSO auf die Schädigung durch PI und VIS-Bestrahlung 54 4 Diskussion 56 4.1 Experimentelles Designe 58 4.1.1 DNA-Markierung mit PI 58 4.1.2 DNA-Markierung mit EtBr 59 4.2 Untersuchungen zur Chemotoxizität 60 4.2.1 Wechselwirkung zwischen H2O2 und Plasmid-DNA 60 4.2.2 Wechselwirkung zwischen SnCl2 und Plasmid DNA 60 4.2.2.1 Wechselwirkung zwischen H2O2 und SnCl2 61 4.3 Untersuchungen zu ionisierender Strahlung 62 4.3.1 DNA-Schädigung durch ionisierende Strahlung 62 4.3.2 Wechselwirkung zwischen ionisierender Strahlung und PI 63 4.4 Untersuchungen zur Bestrahlung mit Licht 66 4.4.1 Bestrahlung mit UV-Licht (254 nm) 66 4.4.2 Bestrahlung mit UV-Licht (366 nm) 67 4.4.2.1 Wechselwirkung zwischen H2O2 und UV-Licht (366 nm) 67 4.4.3 Bestrahlung mit visuellem Licht (VIS 530 - 575 nm) 68 4.4.4 Grenzen der Methode und Fehlerbetrachtung 69 4.5 Ausblick 70 5 Zusammenfassung 72 6 Summary 75 7 Literaturverzeichnis 77 8 Anhang 84 8.1 Abbildungsverzeichnis 84 8.2 Tabellenverzeichnis 92 8.3 Tabellen mit Daten zu den Abbildungen 96 8.3.1 Einfluss von PI auf die Plasmidkonformation 96 8.3.2 Einfluss von DMSO auf die Konformationsänderung durch PI 99 8.3.3 Einfluss von H2O2 auf die Plasmid-DNA und Wirkung von DMSO 100 8.3.4 Einfluss von H2O2 und PI auf die Plasmid-DNA 101 8.3.5 Einfluss von SnCl2 im TechneScan PYP-Kit auf die Plasmid-DNA 102 8.3.6 Einfluss von DMSO auf die Schädigung durch SnCl2 102 8.3.7 Einfluss von H2O2 auf die Schädigung durch SnCl2 103 8.3.8 Einfluss von DMSO auf die Schädigung durch H2O2 und SnCl2 104 8.3.9 Schädigung durch Röntgenbestrahlung und Einfluss von DMSO 104 8.3.10 Einfluss von PI auf Schädigung durch Röntgenbestrahlung mit Röhrenspannung von 200 kV und 32 kV 105 8.3.11 Bestrahlung mit 99mTc und Einfluss von PI 106 8.3.12 Bestrahlung mit 188Re und Einfluss von PI 107 8.3.13 Bestrahlung mit 223Ra und Einfluss von PI 108 8.3.14 Bestrahlung mit UV-Licht (254 nm) und Einfluss von PI 109 8.3.15 Einfluss von DMSO auf die Schädigung durch UV-Bestrahlung mit 254 nm 110 8.3.16 Bestrahlung mit UV-Licht (366 nm) und Einfluss von PI 110 8.3.17 Einfluss von H2O2 auf die Bestrahlung mit UV-Licht (366 nm) 110 8.3.18 Einfluss von DMSO auf die Schädigung durch H2O2 und UV- Bestrahlung (366 nm) 111 8.3.19 Bestrahlung mit VIS (530-575 nm) und Einfluss von PI 112 8.3.20 Einfluss von DMSO auf die Schädigung durch PI und VIS-Bestrahlung 113 8.3.21 Vergleich Strahlenqualitäten 114 9 Erklärung zur Eröffnung des Promotionsverfahrens 116 10 Erklärung zur Einhaltung gesetzlicher Vorgaben 117 11 Danksagung 118
4

99mTc-HYNIC-DAPI-DNA-Bindungsnachweis und Nachweis von DNA-Doppelstrangbrüchen durch 99mTc-HYNIC-DAPI mittels Agarose-Gelelektrophorese

Punzet, Robert 09 July 2014 (has links) (PDF)
Hintergrund: Ein sehr häufig in der nuklearmedizinischen Diagnostik genutztes Radionuklid ist 99mTc. Es emittiert Gammastrahlung mit einer relativ niedrigen Energie (140 keV) und hat eine kurze Halbwertszeit von 6 h. Zusätzlich zur Gammastrahlung entstehen bei jedem Zerfall von 99mTc Auger-Elektronen. Diese niederenergetischen Elektronen, sehr kurzer Reichweite verfügen über einen hohen LET und erzeugen somit eine ausreichende Energiedeposition, um direkte DSB zu erzeugen. Bei Untersuchungen zu Chemotoxizität und Radiotoxizität mit Zellexperimenten gilt es eine Vielzahl an verschiedenen Schutzmechanismen, Reparaturmechanismen und Signalkaskaden in Zellen zu beachten, welche häufig noch nicht vollständig erforscht sind. Um das schädigende Potential von unterschiedlichen Substanzen und Strahlenqualitäten auf die DNA zu untersuchen, wurde ein zellfreies System gewählt. Ziel dieser Arbeit war es, neben den Strahlenqualitäten der Alpha-, Beta, Gamma- und Röntgenstrahlung die Auger-Elektronen des 99mTc auf ihr Potential zur Induktion von DNA-Strangbrüchen zu untersuchen. Hierfür stand die Substanz 99mTc-HYNIC-DAPI zur Verfügung, welche 99mTc an das Plasmid binden und somit in direkte DNA-Nähe bringen kann. Material und Methode: Alle Versuche wurden mit dem Plasmid pUC 19, einem künstlich hergestellten, bakteriellen Plasmid mit 2686 Basenpaaren, welches als nackte DNA ohne Proteine vorliegt, durchgeführt. Der Vergleich zwischen bestrahltem Plasmid in Ab- und Anwesenheit des Radikalfängers DMSO gibt Hinweise darauf, ob Strangbrüche direkt induziert oder nach Radikalbildung indirekt erzeugt werden. Bei radikalvermittelter Wirkung verhindert DMSO DNA-Strangbrüche und die ungeschädigte Supercoiled-Plasmid-Konformation bleibt erhalten. Nach Bestrahlung des Plasmids erfolgte der Nachweis von Strangbrüchen mittels Agarose-Gelelektrophorese. Bekommt ein Plasmid Einzel- oder Doppelstrangbrüche, so verändert sich seine Konformation zu einem ringförmigen/open circle (ESB) oder einem linearen Plasmid (DSB). Durch veränderte Laufeigenschaften im Agarosegel sind die verschiedenen Konformationen voneinander trennbar. Nach Anfärben der DNA mit dem Fluoreszenzfarbstoff Ethidiumbromid konnte das fluoreszierende Plasmid fotografiert und die Intensität der Konformationsbanden quantifiziert werden. Ergebnisse: Zuerst wurde die Reproduzierbarkeit der Methodik überprüft und festgestellt, dass eine Korrelation zwischen Plasmidmasse und Fluoreszenzintensität besteht. Anschließend wurde in Vorversuchen gezeigt, dass die Inkubationstemperaturen, pH-Werte und der Radikalfänger DMSO keinen Einfluss auf die Plasmidintegrität haben. Bei Bestrahlung mit Röntgenstrahlung, dem Beta-Strahler 188Re und dem nicht DNA-gebundenen Gamma-Strahler und Auger-Emitter 99mTc konnte mit steigender Dosis eine Zunahme an ESB festgestellt werden. Vergleichsproben mit DMSO zeigten keinen Anstieg von ESB, was auf eine radikalvermittelte 67 DNA-Schädigung mittels Reaktiver Sauerstoffspezies (ROS) hinweist. Ab einer Energiedosis von ca. 80 Gy konnten nach Bestrahlung mit 188Re und 99mTc zusätzlich zu den ESB auch DSB nachgewiesen werden. DMSO konnte in den Vergleichsproben sowohl die ESB als auch die DSB erfolgreich verhindern. Bei einer sehr hohen Dosis ≥ 600 Gy zeigte DMSO Kapazitätsgrenzen und es konnten nicht mehr alle Strangbrüche verhindert werden. Die Bestrahlung mit dem Alpha-Strahler (hoher LET) 223Ra fügte, im Vergleich zu Strahlung mit niedrigem LET, dem Plasmid überproportional viele DSB zu. Einige dieser DSB konnten nicht durch DMSO verhindert werden, was auf einen direkten DNA-Schaden bzw. eine zu hohe Radikaldichte hinweist. Ein noch stärkerer direkter Effekt konnte beobachtet werden, wenn 99mTc über die Substanz 99mTc-HYNIC-DAPI an DNA gebunden wurde. Dabei konnten schon ab einer Energiedosis von 4 Gy DSB erzeugt werden, welche trotz Radikalfänger nicht verhindert werden konnten. Schlussfolgerung: Dieser bei 99mTc-HYNIC-DAPI beobachtete Effekt wird den Auger-Elektronen zugeschrieben. Aufgrund ihrer kurzen Reichweite und ihres hohen LET sind sie in der Lage direkte DSB zu erzeugen, wenn sie DNA-gebunden sind oder sich in geringem Abstand zur DNA befinden. Die Ergebnisse der Experimente weisen auf ein therapeutisches Potential von 99mTc hin. Weitere Untersuchungen müssen zeigen, ob eine Adressierung von 99mTc an die DNA im Zellkern einer intakten Zelle zu verwirklichen ist und ob DNA-gebundenes 99mTc durch die Energie der Auger-Elektronen den Zelltod herbeiführen kann. Im nächsten Schritt sollte die Erforschung von Trägersubstanzen erfolgen, welche es ermöglichen Auger-Emitter spezifisch an die DNA von Tumorzellen zu koppeln. / Introduction and aim of the study: A radionuclide commonly used in diagnostic nuclear medicine is 99mTc. It emits gamma rays with a relatively low energy (140 keV) and has a short half-time (6h). In addition to gamma rays, 99mTc radiates so called Auger-electrons with low energy, low range and high linear energy transfer. Due to the high-LET Auger-electrons have a sufficient energy deposition to induce direct double-strand breaks to the DNA. In these experiments we used plasmid DNA to evaluate damage induced to biological systems by different chemotoxical substances and radionuclides as well as external radiation. By using plasmids instead of cell cultures we avoid lots of unexplored signal pathways in cells and it is possible to quantify chemotoxical and radiation damage to the DNA. Materials and methods: The double-stranded plasmid pUC 19 with 2686 bp is used in all experiments. It is a synthetically produced bacterial plasmid without any proteins. To distinguish between directly and indirectly (radical induced) induced damage we used the radical scavenger DMSO. Indirectly induced damage via reactive oxygen species (ROS) can be prevented by DMSO. The quantification of supercoiled forms, single strand breaks (SSB) and double strand breaks (DSB) was measured by the method of agarose gel electrophoresis. After the electrophoresis, agarose gels are dyed in ethidium bromide and imaged with a ccd-camera using ultraviolet transillumination. The bands of the different plasmid forms were quantified through the FIJI computer program. Results: First of all a correlation between plasmid mass and fluorescence intensity was shown. In a pretrial no damaging effect to the plasmid from incubation temperature, pH-value and radical scavenger DMSO appeared. Afterwards we examined chemotoxical SnCl2, external x-rays, the alpha emitter 223Ra, the beta emitter 188Re, gamma- and Auger-emitter 99mTc and the DNA-bound 99mTc-HYNIC-DAPI. The radical scavenger DMSO was used to differentiate between indirect (radical induced) and direct DNA-damage. All different radiation qualities showed an increasing DNA-damage with increasing energy dose. For the low-LET radiation qualities like chemotoxical SnCl2, external x-rays, the beta emitter 188Re and not DNA-bound 99mTc, DMSO showed the quality to prevent the damage. After the deposition of an energy dose ≥ 600 Gy DMSO showed a limitation in his scavenger capacity. During radiation with high-LET beams like 223Ra or DNA-bound 99mTc-HYNIC-DAPI DMSO showed less or nearly no ability to prevent DNA-damage. A 4 Gy dose of 99mTc-HYNIC-DAPI was able to induce DSB into the plasmid. These DSB could not be prevented by DMSO. The lower ESB:DSB ratio for high-LET beams also displays that direct damage is more likely to create DSB than indirect damage. Conclusion: In conclusion we can say that DNA-bound 99mTc-HYNIC-DAPI was most appropriate to induce DSB via a direct effect. It was impossible to prevent this damage due to adding the 69 radical scavenger DMSO. We attribute this to low range, low-LET Auger-electrons and suppose that it may be possible to use DNA-bound 99mTc for therapeutic purpose. Further research has to show if 99mTc can be targeted to the DNA of intact cells and if suitable tracers can be found to safely target and kill tumor cells.
5

99mTc-HYNIC-DAPI-DNA-Bindungsnachweis und Nachweis von DNA-Doppelstrangbrüchen durch 99mTc-HYNIC-DAPI mittels Agarose-Gelelektrophorese

Punzet, Robert 01 April 2014 (has links)
Hintergrund: Ein sehr häufig in der nuklearmedizinischen Diagnostik genutztes Radionuklid ist 99mTc. Es emittiert Gammastrahlung mit einer relativ niedrigen Energie (140 keV) und hat eine kurze Halbwertszeit von 6 h. Zusätzlich zur Gammastrahlung entstehen bei jedem Zerfall von 99mTc Auger-Elektronen. Diese niederenergetischen Elektronen, sehr kurzer Reichweite verfügen über einen hohen LET und erzeugen somit eine ausreichende Energiedeposition, um direkte DSB zu erzeugen. Bei Untersuchungen zu Chemotoxizität und Radiotoxizität mit Zellexperimenten gilt es eine Vielzahl an verschiedenen Schutzmechanismen, Reparaturmechanismen und Signalkaskaden in Zellen zu beachten, welche häufig noch nicht vollständig erforscht sind. Um das schädigende Potential von unterschiedlichen Substanzen und Strahlenqualitäten auf die DNA zu untersuchen, wurde ein zellfreies System gewählt. Ziel dieser Arbeit war es, neben den Strahlenqualitäten der Alpha-, Beta, Gamma- und Röntgenstrahlung die Auger-Elektronen des 99mTc auf ihr Potential zur Induktion von DNA-Strangbrüchen zu untersuchen. Hierfür stand die Substanz 99mTc-HYNIC-DAPI zur Verfügung, welche 99mTc an das Plasmid binden und somit in direkte DNA-Nähe bringen kann. Material und Methode: Alle Versuche wurden mit dem Plasmid pUC 19, einem künstlich hergestellten, bakteriellen Plasmid mit 2686 Basenpaaren, welches als nackte DNA ohne Proteine vorliegt, durchgeführt. Der Vergleich zwischen bestrahltem Plasmid in Ab- und Anwesenheit des Radikalfängers DMSO gibt Hinweise darauf, ob Strangbrüche direkt induziert oder nach Radikalbildung indirekt erzeugt werden. Bei radikalvermittelter Wirkung verhindert DMSO DNA-Strangbrüche und die ungeschädigte Supercoiled-Plasmid-Konformation bleibt erhalten. Nach Bestrahlung des Plasmids erfolgte der Nachweis von Strangbrüchen mittels Agarose-Gelelektrophorese. Bekommt ein Plasmid Einzel- oder Doppelstrangbrüche, so verändert sich seine Konformation zu einem ringförmigen/open circle (ESB) oder einem linearen Plasmid (DSB). Durch veränderte Laufeigenschaften im Agarosegel sind die verschiedenen Konformationen voneinander trennbar. Nach Anfärben der DNA mit dem Fluoreszenzfarbstoff Ethidiumbromid konnte das fluoreszierende Plasmid fotografiert und die Intensität der Konformationsbanden quantifiziert werden. Ergebnisse: Zuerst wurde die Reproduzierbarkeit der Methodik überprüft und festgestellt, dass eine Korrelation zwischen Plasmidmasse und Fluoreszenzintensität besteht. Anschließend wurde in Vorversuchen gezeigt, dass die Inkubationstemperaturen, pH-Werte und der Radikalfänger DMSO keinen Einfluss auf die Plasmidintegrität haben. Bei Bestrahlung mit Röntgenstrahlung, dem Beta-Strahler 188Re und dem nicht DNA-gebundenen Gamma-Strahler und Auger-Emitter 99mTc konnte mit steigender Dosis eine Zunahme an ESB festgestellt werden. Vergleichsproben mit DMSO zeigten keinen Anstieg von ESB, was auf eine radikalvermittelte 67 DNA-Schädigung mittels Reaktiver Sauerstoffspezies (ROS) hinweist. Ab einer Energiedosis von ca. 80 Gy konnten nach Bestrahlung mit 188Re und 99mTc zusätzlich zu den ESB auch DSB nachgewiesen werden. DMSO konnte in den Vergleichsproben sowohl die ESB als auch die DSB erfolgreich verhindern. Bei einer sehr hohen Dosis ≥ 600 Gy zeigte DMSO Kapazitätsgrenzen und es konnten nicht mehr alle Strangbrüche verhindert werden. Die Bestrahlung mit dem Alpha-Strahler (hoher LET) 223Ra fügte, im Vergleich zu Strahlung mit niedrigem LET, dem Plasmid überproportional viele DSB zu. Einige dieser DSB konnten nicht durch DMSO verhindert werden, was auf einen direkten DNA-Schaden bzw. eine zu hohe Radikaldichte hinweist. Ein noch stärkerer direkter Effekt konnte beobachtet werden, wenn 99mTc über die Substanz 99mTc-HYNIC-DAPI an DNA gebunden wurde. Dabei konnten schon ab einer Energiedosis von 4 Gy DSB erzeugt werden, welche trotz Radikalfänger nicht verhindert werden konnten. Schlussfolgerung: Dieser bei 99mTc-HYNIC-DAPI beobachtete Effekt wird den Auger-Elektronen zugeschrieben. Aufgrund ihrer kurzen Reichweite und ihres hohen LET sind sie in der Lage direkte DSB zu erzeugen, wenn sie DNA-gebunden sind oder sich in geringem Abstand zur DNA befinden. Die Ergebnisse der Experimente weisen auf ein therapeutisches Potential von 99mTc hin. Weitere Untersuchungen müssen zeigen, ob eine Adressierung von 99mTc an die DNA im Zellkern einer intakten Zelle zu verwirklichen ist und ob DNA-gebundenes 99mTc durch die Energie der Auger-Elektronen den Zelltod herbeiführen kann. Im nächsten Schritt sollte die Erforschung von Trägersubstanzen erfolgen, welche es ermöglichen Auger-Emitter spezifisch an die DNA von Tumorzellen zu koppeln. / Introduction and aim of the study: A radionuclide commonly used in diagnostic nuclear medicine is 99mTc. It emits gamma rays with a relatively low energy (140 keV) and has a short half-time (6h). In addition to gamma rays, 99mTc radiates so called Auger-electrons with low energy, low range and high linear energy transfer. Due to the high-LET Auger-electrons have a sufficient energy deposition to induce direct double-strand breaks to the DNA. In these experiments we used plasmid DNA to evaluate damage induced to biological systems by different chemotoxical substances and radionuclides as well as external radiation. By using plasmids instead of cell cultures we avoid lots of unexplored signal pathways in cells and it is possible to quantify chemotoxical and radiation damage to the DNA. Materials and methods: The double-stranded plasmid pUC 19 with 2686 bp is used in all experiments. It is a synthetically produced bacterial plasmid without any proteins. To distinguish between directly and indirectly (radical induced) induced damage we used the radical scavenger DMSO. Indirectly induced damage via reactive oxygen species (ROS) can be prevented by DMSO. The quantification of supercoiled forms, single strand breaks (SSB) and double strand breaks (DSB) was measured by the method of agarose gel electrophoresis. After the electrophoresis, agarose gels are dyed in ethidium bromide and imaged with a ccd-camera using ultraviolet transillumination. The bands of the different plasmid forms were quantified through the FIJI computer program. Results: First of all a correlation between plasmid mass and fluorescence intensity was shown. In a pretrial no damaging effect to the plasmid from incubation temperature, pH-value and radical scavenger DMSO appeared. Afterwards we examined chemotoxical SnCl2, external x-rays, the alpha emitter 223Ra, the beta emitter 188Re, gamma- and Auger-emitter 99mTc and the DNA-bound 99mTc-HYNIC-DAPI. The radical scavenger DMSO was used to differentiate between indirect (radical induced) and direct DNA-damage. All different radiation qualities showed an increasing DNA-damage with increasing energy dose. For the low-LET radiation qualities like chemotoxical SnCl2, external x-rays, the beta emitter 188Re and not DNA-bound 99mTc, DMSO showed the quality to prevent the damage. After the deposition of an energy dose ≥ 600 Gy DMSO showed a limitation in his scavenger capacity. During radiation with high-LET beams like 223Ra or DNA-bound 99mTc-HYNIC-DAPI DMSO showed less or nearly no ability to prevent DNA-damage. A 4 Gy dose of 99mTc-HYNIC-DAPI was able to induce DSB into the plasmid. These DSB could not be prevented by DMSO. The lower ESB:DSB ratio for high-LET beams also displays that direct damage is more likely to create DSB than indirect damage. Conclusion: In conclusion we can say that DNA-bound 99mTc-HYNIC-DAPI was most appropriate to induce DSB via a direct effect. It was impossible to prevent this damage due to adding the 69 radical scavenger DMSO. We attribute this to low range, low-LET Auger-electrons and suppose that it may be possible to use DNA-bound 99mTc for therapeutic purpose. Further research has to show if 99mTc can be targeted to the DNA of intact cells and if suitable tracers can be found to safely target and kill tumor cells.

Page generated in 0.0657 seconds