• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tópicos em otimização com restrições lineares / Topics on linearly-constrained optimization

Marina Andretta 24 July 2008 (has links)
Métodos do tipo Lagrangiano Aumentado são muito utilizados para minimização de funções sujeitas a restrições gerais. Nestes métodos, podemos separar o conjunto de restrições em dois grupos: restrições fáceis e restrições difíceis. Dizemos que uma restrição é fácil se existe um algoritmo disponível e eficiente para resolver problemas restritos a este tipo de restrição. Caso contrário, dizemos que a restrição é difícil. Métodos do tipo Lagrangiano aumentado resolvem, a cada iteração, problemas sujeitos às restrições fáceis, penalizando as restrições difíceis. Problemas de minimização com restrições lineares aparecem com freqüência, muitas vezes como resultados da aproximação de problemas com restrições gerais. Este tipo de problema surge também como subproblema de métodos do tipo Lagrangiano aumentado. Assim, uma implementação eficiente para resolver problemas com restrições lineares é relevante para a implementação eficiente de métodos para resolução de problemas de programação não-linear. Neste trabalho, começamos considerando fáceis as restrições de caixa. Introduzimos BETRA-ESPARSO, uma versão de BETRA para problemas de grande porte. BETRA é um método de restrições ativas que utiliza regiões de confiança para minimização em cada face e gradiente espectral projetado para sair das faces. Utilizamos BETRA (denso ou esparso) na resolução dos subproblemas que surgem a cada iteração de ALGENCAN (um método de lagrangiano aumentado). Para decidir qual algoritmo utilizar para resolver cada subproblema, desenvolvemos regras que escolhem um método para resolver o subproblema de acordo com suas características. Em seguida, introduzimos dois algoritmos de restrições ativas desenvolvidos para resolver problemas com restrições lineares (BETRALIN e GENLIN). Estes algoritmos utilizam, a cada iteração, o método do Gradiente Espectral Projetado Parcial quando decidem mudar o conjunto de restrições ativas. O método do gradiente Espectral Projetado Parcial foi desenvolvido especialmente para este propósito. Neste método, as projeções são computadas apenas em um subconjunto das restrições, com o intuito de torná-las mais eficientes. Por fim, tendo introduzido um método para minimização com restrições lineares, consideramos como fáceis as restrições lineares. Incorporamos BETRALIN e GENLIN ao arcabouço de Lagrangianos aumentados e verificamos experimentalmente a eficiência e eficácia destes métodos que trabalham explicitamente com restrições lineares e penalizam as demais. / Augmented Lagrangian methods are widely used to solve general nonlinear programming problems. In these methods, one can split the set of constraints in two groups: the set of easy and hard constraints. A constraint is called easy if there is an efficient method available to solve problems subject to that kind of constraint. Otherwise, the constraints are called hard. Augmented Lagrangian methods solve, at each iteration, problems subject to the set of easy constraints while penalizing the set of hard constraints. Linearly constrained problems appear frequently, sometimes as a result of a linear approximation of a problem, sometimes as an augmented Lagrangian subproblem. Therefore, an efficient method to solve linearly constrained problems is important for the implementation of efficient methods to solve nonlinear programming problems. In this thesis, we begin by considering box constraints as the set of easy constraints. We introduce a version of BETRA to solve large scale problems. BETRA is an active-set method that uses a trust-region strategy to work within the faces and spectral projected gradient to leave the faces. To solve each iteration\'s subproblem of ALGENCAN (an augmented Lagrangian method) we use either the dense or the sparse version of BETRA. We develope rules to decide which box-constrained inner solver should be used at each augmented Lagrangian iteration that considers the main characteristics of the problem to be solved. Then, we introduce two active-set methods to solve linearly constrained problems (BETRALIN and GENLIN). These methods use Partial Spectral Projected Gradient method to change the active set of constraints. The Partial Spectral Projected Gradient method was developed specially for this purpose. It computes projections onto a subset of the linear constraints, aiming to make the projections more efficient. At last, having introduced a linearly-constrained solver, we consider the set of linear constraints as the set of easy constraints. We use BETRALIN and GENLIN in the framework of augmented Lagrangian methods and verify, using numerical experiments, the efficiency and robustness of those methods that work with linear constraints and penalize the nonlinear constraints.
12

Problèmes de transport partiel optimal et d'appariement avec contrainte / Optimal partial transport and constrained matching problems

Nguyen, Van thanh 03 October 2017 (has links)
Cette thèse est consacrée à l'analyse mathématique et numérique pour les problèmes de transport partiel optimal et d'appariement avec contrainte (constrained matching problem). Ces deux problèmes présentent de nouvelles quantités inconnues, appelées parties actives. Pour le transport partiel optimal avec des coûts qui sont donnés par la distance finslerienne, nous présentons des formulations équivalentes caractérisant les parties actives, le potentiel de Kantorovich et le flot optimal. En particulier, l'EDP de condition d'optimalité permet de montrer l'unicité des parties actives. Ensuite, nous étudions en détail des approximations numériques pour lesquelles la convergence de la discrétisation et des simulations numériques sont fournies. Pour les coûts lagrangiens, nous justifions rigoureusement des caractérisations de solution ainsi que des formulations équivalentes. Des exemples numériques sont également donnés. Le reste de la thèse est consacré à l'étude du problème d'appariement optimal avec des contraintes pour le coût de la distance euclidienne. Ce problème a un comportement différent du transport partiel optimal. L'unicité de solution et des formulations équivalentes sont étudiées sous une condition géométrique. La convergence de la discrétisation et des exemples numériques sont aussi établis. Les principaux outils que nous utilisons dans la thèse sont des combinaisons des techniques d'EDP, de la théorie du transport optimal et de la théorie de dualité de Fenchel--Rockafellar. Pour le calcul numérique, nous utilisons des méthodes du lagrangien augmenté. / The manuscript deals with the mathematical and numerical analysis of the optimal partial transport and optimal constrained matching problems. These two problems bring out new unknown quantities, called active submeasures. For the optimal partial transport with Finsler distance costs, we introduce equivalent formulations characterizing active submeasures, Kantorovich potential and optimal flow. In particular, the PDE of optimality condition allows to show the uniqueness of active submeasures. We then study in detail numerical approximations for which the convergence of discretization and numerical simulations are provided. For Lagrangian costs, we derive and justify rigorously characterizations of solution as well as equivalent formulations. Numerical examples are also given. The rest of the thesis presents the study of the optimal constrained matching with the Euclidean distance cost. This problem has a different behaviour compared to the partial transport. The uniqueness of solution and equivalent formulations are studied under geometric condition. The convergence of discretization and numerical examples are also indicated. The main tools which we use in the thesis are some combinations of PDE techniques, optimal transport theory and Fenchel--Rockafellar dual theory. For numerical computation, we make use of augmented Lagrangian methods.

Page generated in 0.104 seconds