• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 526
  • 107
  • 87
  • 38
  • 37
  • 36
  • 19
  • 15
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1020
  • 1020
  • 295
  • 204
  • 186
  • 155
  • 152
  • 140
  • 128
  • 126
  • 117
  • 100
  • 100
  • 96
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

AR-baserad biologiundervisning: En studie om effekterna av augmented reality på elevers korttidsminne och förståelse av mänsklig anatomi / AR-based biology education: A study on the effects of augmented reality on students' short-term memory and understanding of human anatomy

Kanaryd, Erika January 2024 (has links)
This study explores the impact of Augmented Reality (AR) on the retention and comprehension of complex biological systems and processes in middle school education. Leveraging a quasi-experimental design, the research compared the learning outcomes of students using AR with those taught through traditional methods. The study's theoretical framework is grounded in multimodality theory, highlighting the integration of multiple senses and representation forms to enhance learning, as well as cognitive and constructivist learning theories, which emphasize the organization and application of knowledge. A total of 35 students participated, with the AR group engaging with interactive, three-dimensional models of human anatomy, while the control group received traditional teaching. The results indicate that AR can improve students’ ability to understand and engage with complex biological content, supporting higher cognitive processes such as analysis andcreation. However, the study also notes the limitations due to its small sample size and the diversity of the participant group, suggesting the results are preliminary. Future research should expand on these findings with a larger, more diverse sample to explore long-term effects and variances across different learning styles. This study underscores the potential of AR to transform biology education by making learning more interactive and accessible. / Denna studie utforskar effekten av förstärkt verklighet (AR) på bevarandet och förståelsen av komplexa biologiska system och processer i grundskolans utbildning. Med hjälp av en kvasiexperimentell design jämförde studien inlärningsresultaten hos studenter som använde AR med dem som undervisades genom traditionella metoder. Studiens teoretiska ramverk är grundat i teorin om multimodalitet, vilket betonar integrationen av flera sinnen och representationsformer för att förbättra inlärningen, samt kognitiva och konstruktivistiska lärandeteorier, som lägger vikt vid organisation och tillämpning av kunskap. Totalt deltog 35 studenter, där AR-gruppen interagerade med interaktiva, tredimensionella modeller av människokroppens anatomi, medan kontrollgruppen fick traditionell undervisning. Resultaten tyder på att AR kan förbättra elevernas förmåga att förstå och engagera sig i komplex biologiskt innehåll, vilket stödjer högre kognitiva processer såsom analys och skapande. Studien noterar dock begränsningar på grund av dess lilla urvalsstorlek och deltagargruppens mångfald, vilket tyder på att resultaten är preliminära. Framtida forskning bör bygga vidare på dessa resultat med ett större och mer mångsidigt urval för att utforska långsiktiga effekter och variationer över olika inlärningsstilar. Denna studie understryker potentialen hos AR att omvandla biologiundervisningen genom att göra lärandet mer interaktivt och tillgängligt.
262

Augmented Reality: En boost för sminkindustrins kundrespons : En kvantitativ studie om Virtuella Provrum, Riskminimering, Kundrespons och Varumärkesupplevelse / Augmented Reality: A Boost for Customer Response in the Cosmetics Industry

Mawed, Celina, Linder, Natalie January 2024 (has links)
Problematization: E-commerce has expanded rapidly and offers new business opportunities, but many consumers feel insecure when they cannot physically interact with the products. Augmented Reality (AR) is a way to improve product experiences and strengthen consumers' purchase intentions. However, there is a lack of analysis on how AR and the role of brands together influence consumers' decision-making in e-commerce, which constitutes a significant knowledge gap.  Purpose: This study aims to explore how an AR implementation in e-commerce affects consumers' purchase intention and perceived risks, as well as the role of the brand in this context.  Method: A quantitative study with a deductive approach was conducted. The study employed a 2 x 2 "Between Subjects" experimental design along with a questionnaire. Four different groups participated, N=210 and n=105. Data collection was based on the responses from the questionnaire, and a convenience sample was used.  Conclusion: The study shows that the use of AR features increases customer's purchase intentions and the likelihood of Word-of-Mouth. The results further support that AR reduces perceived purchasing risks by improving customer's access to product information. To maximize the impact of AR in e-commerce, companies should integrate the AR technology with a strong brand to further strengthen their relationship with customers. / Problemformulering: E-handeln har snabbt expanderat och erbjuder nya affärsmöjligheter, men många konsumenter upplever osäkerhet då de inte kan interagera fysiskt med produkterna. Augmented Reality (AR) är ett sätt att kunna förbättra produktupplevelser och stärka konsumenters köpintentioner. Dock saknas det en analys av hur AR och varumärkens roll tillsammans påverkar konsumenternas beslutsfattande i e-handeln, vilket utgör en betydande kunskapslucka. Syftet: Studien syftar på att utforska hur en AR-implementering i e-handeln påverkar konsumenters köpbenägenhet och upplevda risker vid köp, samt varumärkets roll i detta. Metod: En kvantitativ studie med en deduktiv ansats har genomförts. I studien användes en 2 x 2 “Between Subjects” experimentell design tillsammans med en enkät. Fyra olika grupper deltog, N=210 och n=105. Datainsamlingen skedde utifrån de insamlade enkätsvaren och ett bekvämlighetsurval tillämpades. Slutsats: Studien visar att användningen av AR-funktionen ökar kundens köpbenägenhet och sannolikheten för Word-of-Mouth. Resultatet stärker stödet att AR minskar upplevda köprisker genom att förbättra kundens tillgång till produktinformation. För att maximera effekten av AR inom e-handeln bör företag integrera tekniken med ett starkt varumärke för att ytterligare stärka relationen med sina kunder.
263

An ambient intelligent environment for accessing building information in facility management operations; A healthcare facility scenario

Gheisari, Masoud 12 January 2015 (has links)
The Architecture, Engineering, Construction, and Operations (AECO) industry is constantly searching for new methods for increasing efficiency and productivity. Facility managers, as a part of the owner/operator role, work in complex and dynamic environments where critical decisions are constantly made. This decision-making process and its consequent performance can be improved by enhancing Situation Awareness (SA) of the facility managers through new digital technologies. SA, as a user-centered approach for understanding facility managers’ information requirement, together with Mobile Augmented Reality (MAR) was used for developing an Ambient Intelligent (AmI) environment for accessing building information in facilities. Augmented Reality has been considered as a viable option to reduce inefficiencies of data overload by providing facility managers with an SA-based tool for visualizing their “real-world” environment with added interactive data. Moreover, Building Information Modeling (BIM) was used as the data repository of the required building information. A pilot study was done to study the integration between SA, MAR, and BIM. InfoSPOT (Information Surveyed Point for Observation and Tracking) was developed as a low-cost solution that leverage current AR technology, showing that it is possible to take an idealized BIM model and integrate its data and 3D information in an MAR environment. A within-subjects user participation experiment and analysis was also conducted to evaluate the usability of the InfoSPOT in facility management related practices. The outcome of statistical analysis (a one-way repeated measure ANOVA) revealed that on average the mobile AR-based environment was relatively seamless and efficient for all participants in the study. Building on the InfoSPOT pilot study, an in-depth research was conducted in the area of healthcare facility management, integrating SA, MAR, and BIM to develop an AmI environment where facility mangers’ information requirement would be superimposed on their real-word view of the facility they maintain and would be interactively accessible through current mobile handheld technology. This AmI environment was compared to the traditional approach of conducting preventive and corrective maintenance using paper-based forms. The purpose of this part of the research was to investigate the hypothesis of “bringing 3D BIM models of building components in an AR environment and making it accessible through handheld mobile devices would help the facility managers to locate those components easier and faster compared to facility managers’ paper-based approach”. The result of this study shows that this innovative application of AR and integrating it with BIM to enhance the SA has the potential to improve construction practices, and in this case, facility management.
264

A contextual AR model based system on-site construction planning

Moore, Nigel Jonathan January 2013 (has links)
The creation of an effective construction schedule is fundamental to the successful completion of a construction project. Effectively communicating the temporal and spatial details of this schedule are vital, however current planning approaches often lead to multiple or misinterpretations of the schedule throughout the planning team. Four Dimensional Computer Aided Design (4D CAD) has emerged over the last twenty years as an effective tool during construction project planning. In recent years Building Information Modelling (BIM) has emerged as a valuable approach to construction informatics throughout the whole lifecycle of a building. Additionally, emerging trends in location-aware and wearable computing provide a future potential for untethered, contextual visualisation and data delivery away from the office. The purpose of this study was to develop a novel computer-based approach, to facilitate on-site 4D construction planning through interaction with a 3D construction model and corresponding building information data in outdoor Augmented Reality (AR). Based on a wide ranging literature review, a conceptual framework was put forward to represent software development requirements to support the sequencing of construction tasks in AR. Based on this framework, an approach was developed that represented the main processes required to plan a construction sequence using an onsite model based 4D methodology. Using this proposed approach, a prototype software tool was developed, 4DAR. The implemented tool facilitated the mapping of elements within an interactive 3D model with corresponding BIM data objects to provide an interface for two way communication with the underlying Industry Foundation Class (IFC) data model. Positioning data from RTK-GPS and an electronic compass enabled the geo-located 3D model to be registered in world coordinates and visualised using a head mounted display fitted with a ii forward facing video camera. The scheduling of construction tasks was achieved using a novel interactive technique that negated the need for a previous construction schedule to be input into the system. The resulting 4D simulation can be viewed at any time during the scheduling process, facilitating an iterative approach to project planning to be adopted. Furthermore, employing the IFC file as a central read/write repository for schedule data reduces the amount of disparate documentation and centralises the storage of schedule information, while improving communication and facilitating collaborative working practices within a project planning team. Post graduate students and construction professionals evaluated the implemented prototype tool to test its usefulness for construction planning requirements. It emerged from the evaluation sessions that the implemented tool had achieved the essential requirements highlighted in the conceptual framework and proposed approach. Furthermore, the evaluators expressed that the implemented software and proposed novel approach to construction planning had potential to assist with the planning process for both experienced and inexperienced construction planners. The following contributions to knowledge have been made by this study in the areas of 4D CAD, construction applications of augmented reality and Building Information Modelling; · 4D Construction Planning in Outdoor Augmented Reality (AR) · The development of a novel 4D planning approach through decomposition · The deployment of Industry Foundation Classes (IFC) in AR · Leveraging IFC files for centralised data management within real time planning and visualisation environment.
265

Convergence in mixed reality-virtuality environments : facilitating natural user behavior

Johansson, Daniel January 2012 (has links)
This thesis addresses the subject of converging real and virtual environments to a combined entity that can facilitate physiologically complying interfaces for the purpose of training. Based on the mobility and physiological demands of dismounted soldiers, the base assumption is that greater immersion means better learning and potentially higher training transfer. As the user can interface with the system in a natural way, more focus and energy can be used for training rather than for control itself. Identified requirements on a simulator relating to physical and psychological user aspects are support for unobtrusive and wireless use, high field of view, high performance tracking, use of authentic tools, ability to see other trainees, unrestricted movement and physical feedback. Using only commercially available systems would be prohibitively expensive whilst not providing a solution that would be fully optimized for the target group for this simulator. For this reason, most of the systems that compose the simulator are custom made to facilitate physiological human aspects as well as to bring down costs. With the use of chroma keying, a cylindrical simulator room and parallax corrected high field of view video see-though head mounted displays, the real and virtual reality are mixed. This facilitates use of real tool as well as layering and manipulation of real and virtual objects. Furthermore, a novel omnidirectional floor and thereto interface scheme is developed to allow limitless physical walking to be used for virtual translation. A physically confined real space is thereby transformed into an infinite converged environment. The omnidirectional floor regulation algorithm can also provide physical feedback through adjustment of the velocity in order to synchronize virtual obstacles with the surrounding simulator walls. As an alternative simulator target use, an omnidirectional robotic platform has been developed that can match the user movements. This can be utilized to increase situation awareness in telepresence applications.
266

Assessing the effects of augmented reality on the spatial skills of postsecondary construction management students in the U.S.

Kim, Jeff 27 May 2016 (has links)
There is a continual challenge within the construction industry to meet schedule, budget, and quality expectations. At the same time, there is an underlying problem where the older and more experienced workforce is retiring from industry at a faster rate than the newer workforce can replace them. As the more experienced workforce departs from the industry, they are taking with them much-needed skills and experience that fail to get transitioned to the newer and less experienced workforce. Among these skills are spatial skills. The construction industry has already caught on that this is a serious problem that they must contend with, and so, they have looked to the postsecondary institutions to help resolve it. However, the postsecondary institutions have a problem of their own, whereby they commonly default to passive teaching techniques that are not well suited to teaching spatial skills. So, therefore, there is a need to graduate construction management students with better spatial skills in order to meet the necessities of industry. Along with this, is the need for academia to reconsider teaching styles to better train spatial skills. Spatial skills, it has been found, are better retained when active and collaborative teaching engagements are arranged. Therefore, identifying and testing a practical and non-interfering classroom tool that students can easily use, would be the most favorable way to overcome academia’s tendency towards passive teaching. Spatial skills are needed in every part of the construction industry. In fact, everyday simple tasks require spatial skills and while these skills are honed over time, more refined skills, capable of interpreting abstract space, are required to assemble a complex construction project. Construction projects are getting more complex and often the design involves some measure of abstract thinking. Teaching these abstract-based spatial skills in postsecondary institutions has typically been done through drafting and plan reading courses, with some success. However, the need from industry is not being fully met with these skills and so an alternative solution is recommended. While Building Information Modeling (BIM) has become an adequate solution to aid in the understanding and planning of highly abstract designs, successfully using it requires excellent spatial skills. Consequently, it would be advantageous if those spatial skills were developed before students were introduced to BIM. Augmented reality is a collection of technologies that allows a user to view the “real” world with additional information that is intended to provide a better understanding of what is being observed. Augmented reality already has applications in many industries and is fast becoming a proven technology. With the availability of smaller and more powerful consumer mobile devices, augmented reality has the potential of becoming a more ubiquitous and practical tool. Recognizing that this technology can be practical, non-interfering, and known by the masses makes it an excellent solution for the classroom. Therefore, this research will study the use of an augmented reality tool to determine if there is an improvement of spatial skills in terms of accuracy, time to execute, and the retention of concepts over time. Furthermore, a separate analysis will be conducted to determine if the teaching tool is a benefit or disruption to the overall learning experience.
267

Going Beyond the Desktop Computer with an Attitude

Sokoler, Tomas January 2004 (has links)
This dissertation is based upon the work within a number of research projects, five of which are presented in detail. The work follows the direction of research laid out by the Ubiquitous Computing and Augmented Reality research programs and concerns the broad question of where to go as we seek to take digital technology, and human interactions with this technology, beyond the traditional desktop computer. The work presented takes a design-oriented approach to Human Computer Interaction research. Five prototype systems are presented: Ambient displays for remote awareness, a navigation device providing guidance through tactile cues, a personal device for wastewater plant operators, paper cards enabling control of video playback, and a cell phone that enables you to ‘talk silent’. It is discussed how these prototypes, despite obvious differences, all reflect the same overall attitude towards the role of digital technology. It is an attitude emphasizing that integration of digital technology with everyday human activities means making computational power manifest as part of a larger patchwork of resources. Furthermore, it is an attitude promoting the design of digital technology that leaves the control and initiative with people and their earned ability to take appropriate action when faced with the particularities of the social and physical settings encountered in everyday life beyond the computer screen. In other words, this dissertation brings forward, by using five prototypes as examples, an attitude that encourages us to recognize, embrace, and take advantage of, the fact that human interaction with digital technology takes place, not in a vacuum, but in a rich and diverse world full of many resources for human action other than the digital technology we bring about. / <p>In collaboration with School of Arts and Communication, Malmö University, Sweden.</p>
268

LOCATIVE MEDIA, AUGMENTED REALITIES AND THE ORDINARY AMERICAN LANDSCAPE

Boulton, Andrew 01 January 2013 (has links)
This dissertation investigates the role of annotative locative media in mediating experiences of place. The overarching impetus motivating this research is the need to bring to bear the theoretical and substantive concerns of cultural landscape studies on the development of a methodological framework for interrogating the ways in which annotative locative media reconfigure experiences of urban landscapes. I take as my empirical cases i) Google Maps with its associated Street View and locational placemark interface, and ii) Layar, an augmented reality platform combining digital mapping and real-time locational augmentation. In the spirit of landscape studies’ longstanding and renewed interest in what may be termed “ordinary” residential landscapes, and reflecting the increasing imbrication of locative media technologies in everyday lives, the empirical research is based in Kenwick, a middleclass, urban residential neighborhood in Lexington, Kentucky. Overall, I present an argument about the need to consider the digital, code (i.e. software), and specifically locative media, in the intellectual context of critical geographies in general and cultural landscape studies in particular.
269

Security and privacy in perceptual computing

Jana, Suman 18 September 2014 (has links)
Perceptual, "context-aware" applications that observe their environment and interact with users via cameras and other sensors are becoming ubiquitous on personal computers, mobile phones, gaming platforms, household robots, and augmented-reality devices. This dissertation's main thesis is that perceptual applications present several new classes of security and privacy risks to both their users and the bystanders. Existing perceptual platforms are often completely inadequate for mitigating these risks. For example, we show that the augmented reality browsers, a class of popular perceptual platforms, contain numerous inherent security and privacy flaws. The key insight of this dissertation is that perceptual platforms can provide stronger security and privacy guarantees by controlling the interfaces they expose to the applications. We explore three different approaches that perceptual platforms can use to minimize the risks of perceptual computing: (i) redesigning the perceptual platform interfaces to provide a fine-grained permission system that allows least-privileged application development; (ii) leveraging existing perceptual interfaces to enforce access control on perceptual data, apply algorithmic privacy transforms to reduce the amount of sensitive content sent to the applications, and enable the users to audit/control the amount of perceptual data that reaches each application; and (iii) monitoring the applications' usage of perceptual interfaces to find anomalous high-risk cases. To demonstrate the efficacy of our approaches, first, we build a prototype perceptual platform that supports fine-grained privileges by redesigning the perceptual interfaces. We show that such a platform not only allows creation of least-privileged perceptual applications but also can improve performance by minimizing the overheads of executing multiple concurrent applications. Next, we build DARKLY, a security and privacy-aware perceptual platform that leverages existing perceptual interfaces to deploy several different security and privacy protection mechanisms: access control, algorithmic privacy transforms, and user audit. We find that DARKLY can run most existing perceptual applications with minimal changes while still providing strong security and privacy protection. Finally, We introduce peer group analysis, a new technique that detects anomalous high-risk perceptual interface usages by creating peer groups with software providing similar functionality and comparing each application's perceptual interface usages against those of its peers. We demonstrate that such peer groups can be created by leveraging information already available in software markets like textual descriptions and categories of applications, list of related applications, etc. Such automated detection of high-risk applications is essential for creating a safer perceptual ecosystem as it helps the users in identifying and installing safer applications with any desired functionality and encourages the application developers to follow the principle of least privilege. / text
270

Augmented Reality for Spatial Perception in the Computer Assisted Surgical Trainer

Wagner, Adam, Wagner, Adam January 2017 (has links)
Traditional laparoscopic surgery continues to require significant training on the part of the surgeon before entering the operating room. Augmented Reality (AR) has been investigated for use in visual guidance in training and during surgery, but little work is available investigating the effectiveness of AR techniques in providing the user better awareness of depth and space. In this work we propose several 2D AR overlays for visual guidance in training for laparoscopic surgery, with the goal of aiding the user's perception of depth and space in that limiting environment. A pilot study of 30 subjects (22 male and 8 female) was performed with results showing the effect of the various overlays on subject performance of a path following task in the Computer Assisted Surgical Trainer (CAST-III) system developed in the Model Based Design Lab. Deviation, economy of movement, and completion time are considered as metrics. Providing a reference indicator for the nearest point on the optimal path is found to result in significant reduction (p < 0.05) in subject deviation from the path. The data also indicates a reduction in subject deviation along the depth axis and total path length with overlays designed to provide depth information. Avenues for further investigation are presented.

Page generated in 0.2483 seconds