• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep neural networks for natural language processing and its acceleration

Lin, Zhouhan 08 1900 (has links)
Cette thèse par article comprend quatre articles qui contribuent au domaine de l'apprentissage profond, en particulier à l'accélération de l’apprentissage par le biais de réseaux à faible précision et à l'application de réseaux de neurones profonds au traitement du langage naturel. Dans le premier article, nous étudions un schéma d’entraînement de réseau de neurones qui élimine la plupart des multiplications en virgule flottante. Cette approche consiste à binariser ou à ternariser les poids dans la propagation en avant et à quantifier les états cachés dans la propagation arrière, ce qui convertit les multiplications en changements de signe et en décalages binaires. Les résultats expérimentaux sur des jeux de données de petite à moyenne taille montrent que cette approche produit des performances encore meilleures que l’approche standard de descente de gradient stochastique, ouvrant la voie à un entraînement des réseaux de neurones rapide et efficace au niveau du matériel. Dans le deuxième article, nous avons proposé un mécanisme structuré d’auto-attention d’enchâssement de phrases qui extrait des représentations interprétables de phrases sous forme matricielle. Nous démontrons des améliorations dans 3 tâches différentes: le profilage de l'auteur, la classification des sentiments et l'implication textuelle. Les résultats expérimentaux montrent que notre modèle génère un gain en performance significatif par rapport aux autres méthodes d’enchâssement de phrases dans les 3 tâches. Dans le troisième article, nous proposons un modèle hiérarchique avec graphe de calcul dynamique, pour les données séquentielles, qui apprend à construire un arbre lors de la lecture de la séquence. Le modèle apprend à créer des connexions de saut adaptatives, ce qui facilitent l'apprentissage des dépendances à long terme en construisant des cellules récurrentes de manière récursive. L’entraînement du réseau peut être fait soit par entraînement supervisée en donnant des structures d’arbres dorés, soit par apprentissage par renforcement. Nous proposons des expériences préliminaires dans 3 tâches différentes: une nouvelle tâche d'évaluation de l'expression mathématique (MEE), une tâche bien connue de la logique propositionnelle et des tâches de modélisation du langage. Les résultats expérimentaux montrent le potentiel de l'approche proposée. Dans le quatrième article, nous proposons une nouvelle méthode d’analyse par circonscription utilisant les réseaux de neurones. Le modèle prédit la structure de l'arbre d'analyse en prédisant un scalaire à valeur réelle, soit la distance syntaxique, pour chaque position de division dans la phrase d'entrée. L'ordre des valeurs relatives de ces distances syntaxiques détermine ensuite la structure de l'arbre d'analyse en spécifiant l'ordre dans lequel les points de division seront sélectionnés, en partitionnant l'entrée de manière récursive et descendante. L’approche proposée obtient une performance compétitive sur le jeu de données Penn Treebank et réalise l’état de l’art sur le jeu de données Chinese Treebank. / This thesis by article consists of four articles which contribute to the field of deep learning, specifically in the acceleration of training through low-precision networks, and the application of deep neural networks on natural language processing. In the first article, we investigate a neural network training scheme that eliminates most of the floating-point multiplications. This approach consists of binarizing or ternarizing the weights in the forward propagation and quantizing the hidden states in the backward propagation, which converts multiplications to sign changes and binary shifts. Experimental results on datasets from small to medium size show that this approach result in even better performance than standard stochastic gradient descent training, paving the way to fast, hardware-friendly training of neural networks. In the second article, we proposed a structured self-attentive sentence embedding that extracts interpretable sentence representations in matrix form. We demonstrate improvements on 3 different tasks: author profiling, sentiment classification and textual entailment. Experimental results show that our model yields a significant performance gain compared to other sentence embedding methods in all of the 3 tasks. In the third article, we propose a hierarchical model with dynamical computation graph for sequential data that learns to construct a tree while reading the sequence. The model learns to create adaptive skip-connections that ease the learning of long-term dependencies through constructing recurrent cells in a recursive manner. The training of the network can either be supervised training by giving golden tree structures, or through reinforcement learning. We provide preliminary experiments in 3 different tasks: a novel Math Expression Evaluation (MEE) task, a well-known propositional logic task, and language modelling tasks. Experimental results show the potential of the proposed approach. In the fourth article, we propose a novel constituency parsing method with neural networks. The model predicts the parse tree structure by predicting a real valued scalar, named syntactic distance, for each split position in the input sentence. The order of the relative values of these syntactic distances then determine the parse tree structure by specifying the order in which the split points will be selected, recursively partitioning the input, in a top-down fashion. Our proposed approach was demonstrated with competitive performance on Penn Treebank dataset, and the state-of-the-art performance on Chinese Treebank dataset.
2

Neural approaches to dialog modeling

Sankar, Chinnadhurai 08 1900 (has links)
Cette thèse par article se compose de quatre articles qui contribuent au domaine de l’apprentissage profond, en particulier dans la compréhension et l’apprentissage des ap- proches neuronales des systèmes de dialogue. Le premier article fait un pas vers la compréhension si les architectures de dialogue neuronal couramment utilisées capturent efficacement les informations présentes dans l’historique des conversations. Grâce à une série d’expériences de perturbation sur des ensembles de données de dialogue populaires, nous constatons que les architectures de dialogue neuronal couramment utilisées comme les modèles seq2seq récurrents et basés sur des transformateurs sont rarement sensibles à la plupart des perturbations du contexte d’entrée telles que les énoncés manquants ou réorganisés, les mots mélangés, etc. Le deuxième article propose d’améliorer la qualité de génération de réponse dans les systèmes de dialogue de domaine ouvert en modélisant conjointement les énoncés avec les attributs de dialogue de chaque énoncé. Les attributs de dialogue d’un énoncé se réfèrent à des caractéristiques ou des aspects discrets associés à un énoncé comme les actes de dialogue, le sentiment, l’émotion, l’identité du locuteur, la personnalité du locuteur, etc. Le troisième article présente un moyen simple et économique de collecter des ensembles de données à grande échelle pour modéliser des systèmes de dialogue orientés tâche. Cette approche évite l’exigence d’un schéma d’annotation d’arguments complexes. La version initiale de l’ensemble de données comprend 13 215 dialogues basés sur des tâches comprenant six domaines et environ 8 000 entités nommées uniques, presque 8 fois plus que l’ensemble de données MultiWOZ populaire. / This thesis by article consists of four articles which contribute to the field of deep learning, specifically in understanding and learning neural approaches to dialog systems. The first article takes a step towards understanding if commonly used neural dialog architectures effectively capture the information present in the conversation history. Through a series of perturbation experiments on popular dialog datasets, wefindthatcommonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most input context perturbations such as missing or reordering utterances, shuffling words, etc. The second article introduces a simple and cost-effective way to collect large scale datasets for modeling task-oriented dialog systems. This approach avoids the requirement of a com-plex argument annotation schema. The initial release of the dataset includes 13,215 task-based dialogs comprising six domains and around 8k unique named entities, almost 8 times more than the popular MultiWOZ dataset. The third article proposes to improve response generation quality in open domain dialog systems by jointly modeling the utterances with the dialog attributes of each utterance. Dialog attributes of an utterance refer to discrete features or aspects associated with an utterance like dialog-acts, sentiment, emotion, speaker identity, speaker personality, etc. The final article introduces an embedding-free method to compute word representations on-the-fly. This approach significantly reduces the memory footprint which facilitates de-ployment in on-device (memory constraints) devices. Apart from being independent of the vocabulary size, we find this approach to be inherently resilient to common misspellings.

Page generated in 0.1045 seconds