• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Detecção de crises epilépticas a partir de sinais eletroencefalográficos / Detection of epileptic crises starting from signs of electroencephalogram

Parreira, Fábio José 30 May 2006 (has links)
The epilepsy is not a recent phenomenon, even its has being approached and Inves- tigated, this area still demands several researches and it is far away from being totally explained. The obtaining of the primordial features to di®erentiate the epileptic events of the others, in coming signs EEG of scalp, it represents a great challenge, since exist to many artifacts, and these are confused with epileptic events. In this sense, this study presents the development of architectures destined to detect events of epilepsy in coming signs EEG of scalp, capable to aid the professionals of the health in the study of this pathology To accomplish the objectives, ¯rstly was developed an application capable to visualize EEG and to segment the electroencephalogram plan to form the base of data Concerning to the detection of the pathological signs, four architectures were proposed. The architecture with analysis multi-resolution used the \ wavelet " (WT) for extraction of features, as well as neural networks and specialist system for recognition. For that architecture the best gotten results obtained a rate of 71,6 % of success, with 28,3 % of error. The sensibility was around 83,3 %, the speci¯city 70,5 % and the precision 76,9 %. The statistical architecture is directly composed of tools for features extraction of the sign. The best success rate was around 85,3 %, the obtained error was of 14,3 % and the inde¯nite ones around 1 %. The sensibility was of 97,4 %, the speci¯city 82,1 % and the precision 89,75 %. The architecture of analysis multi-resolution and AR possesses two stages for extraction of feature: the \ wavelet ", following by the AR models. For that architecture they used two AR models . The best success rate for the \ Yule-Walker"model was around 87,9 %, with order 10. Already in the results of the \ Burg"model, the best success rate was of 88,5 % with order 7. For the last architecture is a hybrid model with several tools of extraction of features in the domain of the time, frequency (FFT) and time-frequency (WT). In that architecture the success rate was in 95,1 %, the error 4,1 % the inde¯nite ones 5,5 %. The speci¯city was of 91,5 %, the obtained sensibility was of 90,5 % and the precision around 91,1 %. Therefore all of the developed systems presented quite coherent results among the phenomena demarcated by the professionals of the medical area and those revealed by the architectures, mainly for the case of the hybrid architecture that presented the best rates. / A identificação de fenômenos epileptogênicos por meio de registros eletroencefalográficos (EEG) não invasivos se constitui numa área de pesquisa que apresenta grandes desafios devido µa presença de diversos distúrbios (artefatos) que dificultam a análise destes registros. Tal tarefa é de extrema importância uma vez que o diagnóstico e o tratamento da epilepsia requer uma avaliação clínica baseada no EEG do paciente. Neste contexto, este trabalho apresenta alguns sistemas para melhorar a identificação dos sinais de crise epilépticas baseados em técnicas de processamento de sinais e de inteligência artificial. Estas propostas são baseadas em uma plataforma que permite a visualização e análise dos arquivos de EEG. Para a detecção de eventos patológicos, são propostas quatro arquiteturas. Na arquitetura com análise multi-resolução foram utilizadas duas famílias wavelet (WT) para a extração de características, redes neurais artificiais e sistema especialista para o reconhecimento dos sinais de crise. Com essa arquitetura, o melhor resultado conseguido foi uma taxa de acerto de 71,6% no reconhecimento dos sinais patológicos. A sensibilidade ficou em torno de 83,3%, a especificidade 70,5% e a precisão 76,9%. Já a arquitetura estatística é composta de ferramentas para extração de características diretamente do sinal. A melhor taxa de acerto ficou em torno de 85,3%, o erro obtido foi de 14,3% e os indefinidos em torno de 1%. A sensibilidade foi de 97,4%, a especificidade 82,1% e a precisão 89,75%. A arquitetura de análise multi-resolução com modelo auto-regressivo (AR) possui duas etapas para extração de características: a \wavelet" (WT), seguida do modelo AR. Para essa arquitetura foram utilizados dois modelos AR. A melhor taxa de acerto para o modelo \Yule-Walker" ficou em torno de 87,9%, com ordem 10. Já para os resultados do modelo\Burg", a melhor taxa de acerto foi de 88,5% com ordem 7. A última arquitetura é um modelo híbrido com várias ferramentas de extração de características no domínio do tempo, freqüência (FFT) e tempo-freqüência (WT). Nessa arquitetura a taxa de acerto ficou em 95,1%, o erro em 4,1% e os indefinidos em 5,5%. A especificidade foi de 91,5%, a sensibilidade obtida foi de 90,5% e a precisão em torno de 91,1%. Todos os sistemas desenvolvidos apresentaram resultados coerentes com os fenômenos demarcados pelos eletroencefalografistas e aqueles revelados pelas arquiteturas. Dentre as propostas, a arquitetura híbrida apresentou o melhor desempenho. / Doutor em Ciências
12

Acurácia de previsões para vazão em redes: um comparativo entre ARIMA, GARCH e RNA

Duarte, Felipe Machado 29 August 2014 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-03-31T15:28:38Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Felipe Machado Duarte.pdf: 1439236 bytes, checksum: 970d1a4b49da9d4541eb167aa39a82fa (MD5) / Made available in DSpace on 2016-03-31T15:28:39Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Felipe Machado Duarte.pdf: 1439236 bytes, checksum: 970d1a4b49da9d4541eb167aa39a82fa (MD5) Previous issue date: 2014-08-29 / Em consequência da evolução da internet, causada por mudanças de paradigma como a Internet das coisas, por exemplo, surgem novas demandas tecnológicas por conta do crescimento do número de dispositivos conectados. Um dos novos desafios que vieram junto a esta demanda é gerenciar esta rede em expansão, de maneira a garantir conectividade aos dispositivos que a integram. Um dos aspectos que merecem atenção no gerenciamento da rede é o provisionamento da largura de banda, que deve ser realizado de maneira a evitar o desperdício de banda, sem por outro lado comprometer a conectividade ao restringi-la demais. No entanto, balancear esta equação não é uma tarefa simples, pois o tráfego de dados na rede é bastante complexo e exibe componentes, como a volatilidade, que tornam difícil a sua modelagem. Já há algum tempo, estudos são publicados apresentando a utilização de ferramentas de análise de séries temporais para prever a vazão de dados em redes de computadores, e entre as técnicas aplicadas com mais sucesso estão os modelos ARMA, GARCH e RNA. Embora estas técnicas tenham sido discutidas como alternativa para modelar dados de tráfego de redes, pouco material está disponível sobre a comparação de suas acurácias, de maneira que neste estudo foi proposta uma avaliação das acurácias dos modelos ARIMA, GARCH e RNA. Esta avaliação foi realizada em cenários configurados em diferentes granularidades de tempo e para múltiplos horizontes de previsão. Para cada um destes cenários foram ajustados modelos ARIMA, GARCH e RNA, e a validação das métricas de acurácia das previsões obtidas se deu através do Rolling Forecast Horizon. Os resultados obtidos mostraram que a RNA exibiu melhor acurácia em grande parte dos cenários propostos, chegando a exibir RMSE até 32% menor que as previsões geradas pelos modelos ARIMA e GARCH. No entanto, na presença de alta volatilidade, o GARCH conseguiu apresentar as previsões com melhor desempenho, exibindo RMSE até 29% menores que os outros modelos estudados. Os resultados deste trabalho servem de auxílio para a área de gerenciamento de redes, em especial a tarefa de provisionamento de largura de banda de tráfego, pois trazem mais informações sobre os desempenhos dos modelos ARIMA, GARCH e RNA ao gerar previsões para este tipo de tráfego. / The Internet evolution, caused by paradigm changes as the Internet of Things, fosters technological advances to cope with the rising number of connected devices. One of the new challenges that appeared with this new reality is the management of such expanding networks, assuring connectivity to every device within them. One of the major aspects of network management is bandwidth provisioning, which must be performed in a way to avoid bandwidth wasting, but without compromising connectivity by restricting it too much. Balancing such an equation is not a simple task, as network data traffic is very complex and presents property features, such as volatility, that turns its modeling rather difficult. It has been some time since research is published with the use of temporal analysis tools to predict data throughput in computer networks, among them, the most successful techniques employ the ARMA, GARCH and ANN models. Although these approaches have been discussed as alternatives do network data traffic modeling, there is little literature available concerning their accuracy, which motivated this work to perform an accuracy evaluation of the ARIMA, GARCH and ANN models. This evaluation was conducted in scenarios configured with different time granularities and for multiple forecast horizons. For each scenario, ARIMA, GARCH and ANN models were set, and the accuracy metrics evaluation was performed with a Rolling Forecast Horizon. Results show that ANN yielded better accuracy in most proposed scenarios, having a RMSE up to 32% lower than the forecasts generated by the ARIMA and GARCH models. However, when there is a high volatility, GARCH provided better forecasts, with a RMSE up to 29% lower than its counterparts. The results from this work provide a useful assistance to network management, especially to bandwidth provisioning, by shedding light on the accuracy presented by the ARIMA, GARCH and ANN models when generating forecasts for this type of traffic.
13

Classificação automática de cardiopatias baseada em eletrocardiograma

Bueno, Nina Maria 30 October 2006 (has links)
This work is dedicated to study of the recognition and classification of cardiac disease, diagnosised through the electrocardiogram ECG. This examination is normally used in heart medical center, emergency, intensive therapy, and with complement diagnosis in heart disease as: acute myocardium infarction, bundle block branches, hypertrophy and others. The software was developed for support to the model, with focus on extraction of ECG signal characteristics, and an artificial neural network for recognition of diseases. For extraction these characteristics, we have used a auto-regressive model, AR, with the algorithm least mean square LMS, to minimize the minimum error. The neural network, with architecture multilayer perceptron and back propagation algorithm of training, was chosen for the recognition of the standards. The method was showed efficient. / Este trabalho dedica-se ao estudo do reconhecimento e classificação de cardiopatias, diagnosticadas através do exame de eletrocardiografia, ECG. Esse exame é comumente utilizado em visitas a cardiologistas, centros de emergência, centros de terapia intensiva e exames eletivos para auxílio de diagnóstico de cardiopatias como: infarto agudo do miocárdio, bloqueios de ramos, hipertrofia e outros. O aplicativo desenvolvido para apoio ao trabalho focaliza a extração de características do sinal ECG, representado por ciclos e a aplicação destas características a uma rede neural artificial para reconhecimento das cardiopatias. Para extração das características do sinal, utilizamos o modelo matemático de previsão de comportamento de curvas, chamado de auto-regressivo, AR, onde utilizamos o passado histórico recente da curva para determinar o próximo ponto; em nosso caso, utilizamos o algoritmo dos mínimos quadrados para adequação do erro, conhecido como LMS. A rede neural de topologia perceptron multicamadas e com algoritmo de treinamento backpropagation foi escolhida para o reconhecimento dos padrões, pela sua capacidade de generalização. O método se mostrou adequado e eficiente ao objetivo proposto. / Mestre em Ciências

Page generated in 0.0446 seconds